File size: 35,663 Bytes
ae26e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
import torch
import torch.nn as nn
import torch.nn.functional as F

from modules import devices

# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more


class DeepDanbooruModel(nn.Module):
    def __init__(self):
        super(DeepDanbooruModel, self).__init__()

        self.tags = []

        self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
        self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
        self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
        self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
        self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
        self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
        self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
        self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
        self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
        self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
        self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
        self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
        self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
        self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
        self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
        self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
        self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
        self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
        self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
        self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
        self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
        self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
        self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
        self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
        self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
        self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
        self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
        self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
        self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
        self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
        self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
        self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
        self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
        self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
        self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
        self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
        self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
        self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
        self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
        self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
        self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
        self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
        self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
        self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
        self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
        self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
        self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
        self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
        self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
        self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
        self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
        self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
        self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
        self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
        self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
        self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
        self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
        self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
        self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
        self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
        self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
        self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
        self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
        self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
        self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
        self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)

    def forward(self, *inputs):
        t_358, = inputs
        t_359 = t_358.permute(*[0, 3, 1, 2])
        t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
        t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)
        t_361 = F.relu(t_360)
        t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
        t_362 = self.n_MaxPool_0(t_361)
        t_363 = self.n_Conv_1(t_362)
        t_364 = self.n_Conv_2(t_362)
        t_365 = F.relu(t_364)
        t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
        t_366 = self.n_Conv_3(t_365_padded)
        t_367 = F.relu(t_366)
        t_368 = self.n_Conv_4(t_367)
        t_369 = torch.add(t_368, t_363)
        t_370 = F.relu(t_369)
        t_371 = self.n_Conv_5(t_370)
        t_372 = F.relu(t_371)
        t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
        t_373 = self.n_Conv_6(t_372_padded)
        t_374 = F.relu(t_373)
        t_375 = self.n_Conv_7(t_374)
        t_376 = torch.add(t_375, t_370)
        t_377 = F.relu(t_376)
        t_378 = self.n_Conv_8(t_377)
        t_379 = F.relu(t_378)
        t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
        t_380 = self.n_Conv_9(t_379_padded)
        t_381 = F.relu(t_380)
        t_382 = self.n_Conv_10(t_381)
        t_383 = torch.add(t_382, t_377)
        t_384 = F.relu(t_383)
        t_385 = self.n_Conv_11(t_384)
        t_386 = self.n_Conv_12(t_384)
        t_387 = F.relu(t_386)
        t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
        t_388 = self.n_Conv_13(t_387_padded)
        t_389 = F.relu(t_388)
        t_390 = self.n_Conv_14(t_389)
        t_391 = torch.add(t_390, t_385)
        t_392 = F.relu(t_391)
        t_393 = self.n_Conv_15(t_392)
        t_394 = F.relu(t_393)
        t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
        t_395 = self.n_Conv_16(t_394_padded)
        t_396 = F.relu(t_395)
        t_397 = self.n_Conv_17(t_396)
        t_398 = torch.add(t_397, t_392)
        t_399 = F.relu(t_398)
        t_400 = self.n_Conv_18(t_399)
        t_401 = F.relu(t_400)
        t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
        t_402 = self.n_Conv_19(t_401_padded)
        t_403 = F.relu(t_402)
        t_404 = self.n_Conv_20(t_403)
        t_405 = torch.add(t_404, t_399)
        t_406 = F.relu(t_405)
        t_407 = self.n_Conv_21(t_406)
        t_408 = F.relu(t_407)
        t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
        t_409 = self.n_Conv_22(t_408_padded)
        t_410 = F.relu(t_409)
        t_411 = self.n_Conv_23(t_410)
        t_412 = torch.add(t_411, t_406)
        t_413 = F.relu(t_412)
        t_414 = self.n_Conv_24(t_413)
        t_415 = F.relu(t_414)
        t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
        t_416 = self.n_Conv_25(t_415_padded)
        t_417 = F.relu(t_416)
        t_418 = self.n_Conv_26(t_417)
        t_419 = torch.add(t_418, t_413)
        t_420 = F.relu(t_419)
        t_421 = self.n_Conv_27(t_420)
        t_422 = F.relu(t_421)
        t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
        t_423 = self.n_Conv_28(t_422_padded)
        t_424 = F.relu(t_423)
        t_425 = self.n_Conv_29(t_424)
        t_426 = torch.add(t_425, t_420)
        t_427 = F.relu(t_426)
        t_428 = self.n_Conv_30(t_427)
        t_429 = F.relu(t_428)
        t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
        t_430 = self.n_Conv_31(t_429_padded)
        t_431 = F.relu(t_430)
        t_432 = self.n_Conv_32(t_431)
        t_433 = torch.add(t_432, t_427)
        t_434 = F.relu(t_433)
        t_435 = self.n_Conv_33(t_434)
        t_436 = F.relu(t_435)
        t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
        t_437 = self.n_Conv_34(t_436_padded)
        t_438 = F.relu(t_437)
        t_439 = self.n_Conv_35(t_438)
        t_440 = torch.add(t_439, t_434)
        t_441 = F.relu(t_440)
        t_442 = self.n_Conv_36(t_441)
        t_443 = self.n_Conv_37(t_441)
        t_444 = F.relu(t_443)
        t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
        t_445 = self.n_Conv_38(t_444_padded)
        t_446 = F.relu(t_445)
        t_447 = self.n_Conv_39(t_446)
        t_448 = torch.add(t_447, t_442)
        t_449 = F.relu(t_448)
        t_450 = self.n_Conv_40(t_449)
        t_451 = F.relu(t_450)
        t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
        t_452 = self.n_Conv_41(t_451_padded)
        t_453 = F.relu(t_452)
        t_454 = self.n_Conv_42(t_453)
        t_455 = torch.add(t_454, t_449)
        t_456 = F.relu(t_455)
        t_457 = self.n_Conv_43(t_456)
        t_458 = F.relu(t_457)
        t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
        t_459 = self.n_Conv_44(t_458_padded)
        t_460 = F.relu(t_459)
        t_461 = self.n_Conv_45(t_460)
        t_462 = torch.add(t_461, t_456)
        t_463 = F.relu(t_462)
        t_464 = self.n_Conv_46(t_463)
        t_465 = F.relu(t_464)
        t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
        t_466 = self.n_Conv_47(t_465_padded)
        t_467 = F.relu(t_466)
        t_468 = self.n_Conv_48(t_467)
        t_469 = torch.add(t_468, t_463)
        t_470 = F.relu(t_469)
        t_471 = self.n_Conv_49(t_470)
        t_472 = F.relu(t_471)
        t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
        t_473 = self.n_Conv_50(t_472_padded)
        t_474 = F.relu(t_473)
        t_475 = self.n_Conv_51(t_474)
        t_476 = torch.add(t_475, t_470)
        t_477 = F.relu(t_476)
        t_478 = self.n_Conv_52(t_477)
        t_479 = F.relu(t_478)
        t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
        t_480 = self.n_Conv_53(t_479_padded)
        t_481 = F.relu(t_480)
        t_482 = self.n_Conv_54(t_481)
        t_483 = torch.add(t_482, t_477)
        t_484 = F.relu(t_483)
        t_485 = self.n_Conv_55(t_484)
        t_486 = F.relu(t_485)
        t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
        t_487 = self.n_Conv_56(t_486_padded)
        t_488 = F.relu(t_487)
        t_489 = self.n_Conv_57(t_488)
        t_490 = torch.add(t_489, t_484)
        t_491 = F.relu(t_490)
        t_492 = self.n_Conv_58(t_491)
        t_493 = F.relu(t_492)
        t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
        t_494 = self.n_Conv_59(t_493_padded)
        t_495 = F.relu(t_494)
        t_496 = self.n_Conv_60(t_495)
        t_497 = torch.add(t_496, t_491)
        t_498 = F.relu(t_497)
        t_499 = self.n_Conv_61(t_498)
        t_500 = F.relu(t_499)
        t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
        t_501 = self.n_Conv_62(t_500_padded)
        t_502 = F.relu(t_501)
        t_503 = self.n_Conv_63(t_502)
        t_504 = torch.add(t_503, t_498)
        t_505 = F.relu(t_504)
        t_506 = self.n_Conv_64(t_505)
        t_507 = F.relu(t_506)
        t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
        t_508 = self.n_Conv_65(t_507_padded)
        t_509 = F.relu(t_508)
        t_510 = self.n_Conv_66(t_509)
        t_511 = torch.add(t_510, t_505)
        t_512 = F.relu(t_511)
        t_513 = self.n_Conv_67(t_512)
        t_514 = F.relu(t_513)
        t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
        t_515 = self.n_Conv_68(t_514_padded)
        t_516 = F.relu(t_515)
        t_517 = self.n_Conv_69(t_516)
        t_518 = torch.add(t_517, t_512)
        t_519 = F.relu(t_518)
        t_520 = self.n_Conv_70(t_519)
        t_521 = F.relu(t_520)
        t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
        t_522 = self.n_Conv_71(t_521_padded)
        t_523 = F.relu(t_522)
        t_524 = self.n_Conv_72(t_523)
        t_525 = torch.add(t_524, t_519)
        t_526 = F.relu(t_525)
        t_527 = self.n_Conv_73(t_526)
        t_528 = F.relu(t_527)
        t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
        t_529 = self.n_Conv_74(t_528_padded)
        t_530 = F.relu(t_529)
        t_531 = self.n_Conv_75(t_530)
        t_532 = torch.add(t_531, t_526)
        t_533 = F.relu(t_532)
        t_534 = self.n_Conv_76(t_533)
        t_535 = F.relu(t_534)
        t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
        t_536 = self.n_Conv_77(t_535_padded)
        t_537 = F.relu(t_536)
        t_538 = self.n_Conv_78(t_537)
        t_539 = torch.add(t_538, t_533)
        t_540 = F.relu(t_539)
        t_541 = self.n_Conv_79(t_540)
        t_542 = F.relu(t_541)
        t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
        t_543 = self.n_Conv_80(t_542_padded)
        t_544 = F.relu(t_543)
        t_545 = self.n_Conv_81(t_544)
        t_546 = torch.add(t_545, t_540)
        t_547 = F.relu(t_546)
        t_548 = self.n_Conv_82(t_547)
        t_549 = F.relu(t_548)
        t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
        t_550 = self.n_Conv_83(t_549_padded)
        t_551 = F.relu(t_550)
        t_552 = self.n_Conv_84(t_551)
        t_553 = torch.add(t_552, t_547)
        t_554 = F.relu(t_553)
        t_555 = self.n_Conv_85(t_554)
        t_556 = F.relu(t_555)
        t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
        t_557 = self.n_Conv_86(t_556_padded)
        t_558 = F.relu(t_557)
        t_559 = self.n_Conv_87(t_558)
        t_560 = torch.add(t_559, t_554)
        t_561 = F.relu(t_560)
        t_562 = self.n_Conv_88(t_561)
        t_563 = F.relu(t_562)
        t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
        t_564 = self.n_Conv_89(t_563_padded)
        t_565 = F.relu(t_564)
        t_566 = self.n_Conv_90(t_565)
        t_567 = torch.add(t_566, t_561)
        t_568 = F.relu(t_567)
        t_569 = self.n_Conv_91(t_568)
        t_570 = F.relu(t_569)
        t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
        t_571 = self.n_Conv_92(t_570_padded)
        t_572 = F.relu(t_571)
        t_573 = self.n_Conv_93(t_572)
        t_574 = torch.add(t_573, t_568)
        t_575 = F.relu(t_574)
        t_576 = self.n_Conv_94(t_575)
        t_577 = F.relu(t_576)
        t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
        t_578 = self.n_Conv_95(t_577_padded)
        t_579 = F.relu(t_578)
        t_580 = self.n_Conv_96(t_579)
        t_581 = torch.add(t_580, t_575)
        t_582 = F.relu(t_581)
        t_583 = self.n_Conv_97(t_582)
        t_584 = F.relu(t_583)
        t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
        t_585 = self.n_Conv_98(t_584_padded)
        t_586 = F.relu(t_585)
        t_587 = self.n_Conv_99(t_586)
        t_588 = self.n_Conv_100(t_582)
        t_589 = torch.add(t_587, t_588)
        t_590 = F.relu(t_589)
        t_591 = self.n_Conv_101(t_590)
        t_592 = F.relu(t_591)
        t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
        t_593 = self.n_Conv_102(t_592_padded)
        t_594 = F.relu(t_593)
        t_595 = self.n_Conv_103(t_594)
        t_596 = torch.add(t_595, t_590)
        t_597 = F.relu(t_596)
        t_598 = self.n_Conv_104(t_597)
        t_599 = F.relu(t_598)
        t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
        t_600 = self.n_Conv_105(t_599_padded)
        t_601 = F.relu(t_600)
        t_602 = self.n_Conv_106(t_601)
        t_603 = torch.add(t_602, t_597)
        t_604 = F.relu(t_603)
        t_605 = self.n_Conv_107(t_604)
        t_606 = F.relu(t_605)
        t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
        t_607 = self.n_Conv_108(t_606_padded)
        t_608 = F.relu(t_607)
        t_609 = self.n_Conv_109(t_608)
        t_610 = torch.add(t_609, t_604)
        t_611 = F.relu(t_610)
        t_612 = self.n_Conv_110(t_611)
        t_613 = F.relu(t_612)
        t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
        t_614 = self.n_Conv_111(t_613_padded)
        t_615 = F.relu(t_614)
        t_616 = self.n_Conv_112(t_615)
        t_617 = torch.add(t_616, t_611)
        t_618 = F.relu(t_617)
        t_619 = self.n_Conv_113(t_618)
        t_620 = F.relu(t_619)
        t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
        t_621 = self.n_Conv_114(t_620_padded)
        t_622 = F.relu(t_621)
        t_623 = self.n_Conv_115(t_622)
        t_624 = torch.add(t_623, t_618)
        t_625 = F.relu(t_624)
        t_626 = self.n_Conv_116(t_625)
        t_627 = F.relu(t_626)
        t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
        t_628 = self.n_Conv_117(t_627_padded)
        t_629 = F.relu(t_628)
        t_630 = self.n_Conv_118(t_629)
        t_631 = torch.add(t_630, t_625)
        t_632 = F.relu(t_631)
        t_633 = self.n_Conv_119(t_632)
        t_634 = F.relu(t_633)
        t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
        t_635 = self.n_Conv_120(t_634_padded)
        t_636 = F.relu(t_635)
        t_637 = self.n_Conv_121(t_636)
        t_638 = torch.add(t_637, t_632)
        t_639 = F.relu(t_638)
        t_640 = self.n_Conv_122(t_639)
        t_641 = F.relu(t_640)
        t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
        t_642 = self.n_Conv_123(t_641_padded)
        t_643 = F.relu(t_642)
        t_644 = self.n_Conv_124(t_643)
        t_645 = torch.add(t_644, t_639)
        t_646 = F.relu(t_645)
        t_647 = self.n_Conv_125(t_646)
        t_648 = F.relu(t_647)
        t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
        t_649 = self.n_Conv_126(t_648_padded)
        t_650 = F.relu(t_649)
        t_651 = self.n_Conv_127(t_650)
        t_652 = torch.add(t_651, t_646)
        t_653 = F.relu(t_652)
        t_654 = self.n_Conv_128(t_653)
        t_655 = F.relu(t_654)
        t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
        t_656 = self.n_Conv_129(t_655_padded)
        t_657 = F.relu(t_656)
        t_658 = self.n_Conv_130(t_657)
        t_659 = torch.add(t_658, t_653)
        t_660 = F.relu(t_659)
        t_661 = self.n_Conv_131(t_660)
        t_662 = F.relu(t_661)
        t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
        t_663 = self.n_Conv_132(t_662_padded)
        t_664 = F.relu(t_663)
        t_665 = self.n_Conv_133(t_664)
        t_666 = torch.add(t_665, t_660)
        t_667 = F.relu(t_666)
        t_668 = self.n_Conv_134(t_667)
        t_669 = F.relu(t_668)
        t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
        t_670 = self.n_Conv_135(t_669_padded)
        t_671 = F.relu(t_670)
        t_672 = self.n_Conv_136(t_671)
        t_673 = torch.add(t_672, t_667)
        t_674 = F.relu(t_673)
        t_675 = self.n_Conv_137(t_674)
        t_676 = F.relu(t_675)
        t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
        t_677 = self.n_Conv_138(t_676_padded)
        t_678 = F.relu(t_677)
        t_679 = self.n_Conv_139(t_678)
        t_680 = torch.add(t_679, t_674)
        t_681 = F.relu(t_680)
        t_682 = self.n_Conv_140(t_681)
        t_683 = F.relu(t_682)
        t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
        t_684 = self.n_Conv_141(t_683_padded)
        t_685 = F.relu(t_684)
        t_686 = self.n_Conv_142(t_685)
        t_687 = torch.add(t_686, t_681)
        t_688 = F.relu(t_687)
        t_689 = self.n_Conv_143(t_688)
        t_690 = F.relu(t_689)
        t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
        t_691 = self.n_Conv_144(t_690_padded)
        t_692 = F.relu(t_691)
        t_693 = self.n_Conv_145(t_692)
        t_694 = torch.add(t_693, t_688)
        t_695 = F.relu(t_694)
        t_696 = self.n_Conv_146(t_695)
        t_697 = F.relu(t_696)
        t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
        t_698 = self.n_Conv_147(t_697_padded)
        t_699 = F.relu(t_698)
        t_700 = self.n_Conv_148(t_699)
        t_701 = torch.add(t_700, t_695)
        t_702 = F.relu(t_701)
        t_703 = self.n_Conv_149(t_702)
        t_704 = F.relu(t_703)
        t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
        t_705 = self.n_Conv_150(t_704_padded)
        t_706 = F.relu(t_705)
        t_707 = self.n_Conv_151(t_706)
        t_708 = torch.add(t_707, t_702)
        t_709 = F.relu(t_708)
        t_710 = self.n_Conv_152(t_709)
        t_711 = F.relu(t_710)
        t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
        t_712 = self.n_Conv_153(t_711_padded)
        t_713 = F.relu(t_712)
        t_714 = self.n_Conv_154(t_713)
        t_715 = torch.add(t_714, t_709)
        t_716 = F.relu(t_715)
        t_717 = self.n_Conv_155(t_716)
        t_718 = F.relu(t_717)
        t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
        t_719 = self.n_Conv_156(t_718_padded)
        t_720 = F.relu(t_719)
        t_721 = self.n_Conv_157(t_720)
        t_722 = torch.add(t_721, t_716)
        t_723 = F.relu(t_722)
        t_724 = self.n_Conv_158(t_723)
        t_725 = self.n_Conv_159(t_723)
        t_726 = F.relu(t_725)
        t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
        t_727 = self.n_Conv_160(t_726_padded)
        t_728 = F.relu(t_727)
        t_729 = self.n_Conv_161(t_728)
        t_730 = torch.add(t_729, t_724)
        t_731 = F.relu(t_730)
        t_732 = self.n_Conv_162(t_731)
        t_733 = F.relu(t_732)
        t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
        t_734 = self.n_Conv_163(t_733_padded)
        t_735 = F.relu(t_734)
        t_736 = self.n_Conv_164(t_735)
        t_737 = torch.add(t_736, t_731)
        t_738 = F.relu(t_737)
        t_739 = self.n_Conv_165(t_738)
        t_740 = F.relu(t_739)
        t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
        t_741 = self.n_Conv_166(t_740_padded)
        t_742 = F.relu(t_741)
        t_743 = self.n_Conv_167(t_742)
        t_744 = torch.add(t_743, t_738)
        t_745 = F.relu(t_744)
        t_746 = self.n_Conv_168(t_745)
        t_747 = self.n_Conv_169(t_745)
        t_748 = F.relu(t_747)
        t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
        t_749 = self.n_Conv_170(t_748_padded)
        t_750 = F.relu(t_749)
        t_751 = self.n_Conv_171(t_750)
        t_752 = torch.add(t_751, t_746)
        t_753 = F.relu(t_752)
        t_754 = self.n_Conv_172(t_753)
        t_755 = F.relu(t_754)
        t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
        t_756 = self.n_Conv_173(t_755_padded)
        t_757 = F.relu(t_756)
        t_758 = self.n_Conv_174(t_757)
        t_759 = torch.add(t_758, t_753)
        t_760 = F.relu(t_759)
        t_761 = self.n_Conv_175(t_760)
        t_762 = F.relu(t_761)
        t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
        t_763 = self.n_Conv_176(t_762_padded)
        t_764 = F.relu(t_763)
        t_765 = self.n_Conv_177(t_764)
        t_766 = torch.add(t_765, t_760)
        t_767 = F.relu(t_766)
        t_768 = self.n_Conv_178(t_767)
        t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
        t_770 = torch.squeeze(t_769, 3)
        t_770 = torch.squeeze(t_770, 2)
        t_771 = torch.sigmoid(t_770)
        return t_771

    def load_state_dict(self, state_dict, **kwargs):
        self.tags = state_dict.get('tags', [])

        super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})