File size: 11,062 Bytes
ae26e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py

import math
import numpy as np
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from typing import Optional, List

from modules.codeformer.vqgan_arch import *
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY

def calc_mean_std(feat, eps=1e-5):
    """Calculate mean and std for adaptive_instance_normalization.

    Args:
        feat (Tensor): 4D tensor.
        eps (float): A small value added to the variance to avoid
            divide-by-zero. Default: 1e-5.
    """
    size = feat.size()
    assert len(size) == 4, 'The input feature should be 4D tensor.'
    b, c = size[:2]
    feat_var = feat.view(b, c, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(b, c, 1, 1)
    feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
    return feat_mean, feat_std


def adaptive_instance_normalization(content_feat, style_feat):
    """Adaptive instance normalization.

    Adjust the reference features to have the similar color and illuminations
    as those in the degradate features.

    Args:
        content_feat (Tensor): The reference feature.
        style_feat (Tensor): The degradate features.
    """
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)
    normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
    return normalized_feat * style_std.expand(size) + style_mean.expand(size)


class PositionEmbeddingSine(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """

    def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, x, mask=None):
        if mask is None:
            mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
        not_mask = ~mask
        y_embed = not_mask.cumsum(1, dtype=torch.float32)
        x_embed = not_mask.cumsum(2, dtype=torch.float32)
        if self.normalize:
            eps = 1e-6
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack(
            (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
        ).flatten(3)
        pos_y = torch.stack(
            (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
        ).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos

def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")


class TransformerSALayer(nn.Module):
    def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout)
        # Implementation of Feedforward model - MLP
        self.linear1 = nn.Linear(embed_dim, dim_mlp)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_mlp, embed_dim)

        self.norm1 = nn.LayerNorm(embed_dim)
        self.norm2 = nn.LayerNorm(embed_dim)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward(self, tgt,
                tgt_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        
        # self attention
        tgt2 = self.norm1(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)

        # ffn
        tgt2 = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout2(tgt2)
        return tgt

class Fuse_sft_block(nn.Module):
    def __init__(self, in_ch, out_ch):
        super().__init__()
        self.encode_enc = ResBlock(2*in_ch, out_ch)

        self.scale = nn.Sequential(
                    nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
                    nn.LeakyReLU(0.2, True),
                    nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))

        self.shift = nn.Sequential(
                    nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
                    nn.LeakyReLU(0.2, True),
                    nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1))

    def forward(self, enc_feat, dec_feat, w=1):
        enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1))
        scale = self.scale(enc_feat)
        shift = self.shift(enc_feat)
        residual = w * (dec_feat * scale + shift)
        out = dec_feat + residual
        return out


@ARCH_REGISTRY.register()
class CodeFormer(VQAutoEncoder):
    def __init__(self, dim_embd=512, n_head=8, n_layers=9, 
                codebook_size=1024, latent_size=256,
                connect_list=['32', '64', '128', '256'],
                fix_modules=['quantize','generator']):
        super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)

        if fix_modules is not None:
            for module in fix_modules:
                for param in getattr(self, module).parameters():
                    param.requires_grad = False

        self.connect_list = connect_list
        self.n_layers = n_layers
        self.dim_embd = dim_embd
        self.dim_mlp = dim_embd*2

        self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd))
        self.feat_emb = nn.Linear(256, self.dim_embd)

        # transformer
        self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) 
                                    for _ in range(self.n_layers)])

        # logits_predict head
        self.idx_pred_layer = nn.Sequential(
            nn.LayerNorm(dim_embd),
            nn.Linear(dim_embd, codebook_size, bias=False))
        
        self.channels = {
            '16': 512,
            '32': 256,
            '64': 256,
            '128': 128,
            '256': 128,
            '512': 64,
        }

        # after second residual block for > 16, before attn layer for ==16
        self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18}
        # after first residual block for > 16, before attn layer for ==16
        self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21}

        # fuse_convs_dict
        self.fuse_convs_dict = nn.ModuleDict()
        for f_size in self.connect_list:
            in_ch = self.channels[f_size]
            self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch)

    def _init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def forward(self, x, w=0, detach_16=True, code_only=False, adain=False):
        # ################### Encoder #####################
        enc_feat_dict = {}
        out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
        for i, block in enumerate(self.encoder.blocks):
            x = block(x) 
            if i in out_list:
                enc_feat_dict[str(x.shape[-1])] = x.clone()

        lq_feat = x
        # ################# Transformer ###################
        # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat)
        pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1)
        # BCHW -> BC(HW) -> (HW)BC
        feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1))
        query_emb = feat_emb
        # Transformer encoder
        for layer in self.ft_layers:
            query_emb = layer(query_emb, query_pos=pos_emb)

        # output logits
        logits = self.idx_pred_layer(query_emb) # (hw)bn
        logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n

        if code_only: # for training stage II
          # logits doesn't need softmax before cross_entropy loss
            return logits, lq_feat

        # ################# Quantization ###################
        # if self.training:
        #     quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight])
        #     # b(hw)c -> bc(hw) -> bchw
        #     quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape)
        # ------------
        soft_one_hot = F.softmax(logits, dim=2)
        _, top_idx = torch.topk(soft_one_hot, 1, dim=2)
        quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256])
        # preserve gradients
        # quant_feat = lq_feat + (quant_feat - lq_feat).detach()

        if detach_16:
            quant_feat = quant_feat.detach() # for training stage III
        if adain:
            quant_feat = adaptive_instance_normalization(quant_feat, lq_feat)

        # ################## Generator ####################
        x = quant_feat
        fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]

        for i, block in enumerate(self.generator.blocks):
            x = block(x) 
            if i in fuse_list: # fuse after i-th block
                f_size = str(x.shape[-1])
                if w>0:
                    x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
        out = x
        # logits doesn't need softmax before cross_entropy loss
        return out, logits, lq_feat