File size: 7,402 Bytes
ae26e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import math
import os
import sys
import traceback

import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops

from modules import devices, sd_samplers
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
import modules.images as images
import modules.scripts


def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
    processing.fix_seed(p)

    images = shared.listfiles(input_dir)

    is_inpaint_batch = False
    if inpaint_mask_dir:
        inpaint_masks = shared.listfiles(inpaint_mask_dir)
        is_inpaint_batch = len(inpaint_masks) > 0
    if is_inpaint_batch:
        print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")

    print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")

    save_normally = output_dir == ''

    p.do_not_save_grid = True
    p.do_not_save_samples = not save_normally

    state.job_count = len(images) * p.n_iter

    for i, image in enumerate(images):
        state.job = f"{i+1} out of {len(images)}"
        if state.skipped:
            state.skipped = False

        if state.interrupted:
            break

        img = Image.open(image)
        # Use the EXIF orientation of photos taken by smartphones.
        img = ImageOps.exif_transpose(img)
        p.init_images = [img] * p.batch_size

        if is_inpaint_batch:
            # try to find corresponding mask for an image using simple filename matching
            mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image))
            # if not found use first one ("same mask for all images" use-case)
            if not mask_image_path in inpaint_masks:
                mask_image_path = inpaint_masks[0]
            mask_image = Image.open(mask_image_path)
            p.image_mask = mask_image

        proc = modules.scripts.scripts_img2img.run(p, *args)
        if proc is None:
            proc = process_images(p)

        for n, processed_image in enumerate(proc.images):
            filename = os.path.basename(image)

            if n > 0:
                left, right = os.path.splitext(filename)
                filename = f"{left}-{n}{right}"

            if not save_normally:
                os.makedirs(output_dir, exist_ok=True)
                if processed_image.mode == 'RGBA':
                    processed_image = processed_image.convert("RGB")
                processed_image.save(os.path.join(output_dir, filename))


def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
    override_settings = create_override_settings_dict(override_settings_texts)

    is_batch = mode == 5

    if mode == 0:  # img2img
        image = init_img.convert("RGB")
        mask = None
    elif mode == 1:  # img2img sketch
        image = sketch.convert("RGB")
        mask = None
    elif mode == 2:  # inpaint
        image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
        alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
        mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
        image = image.convert("RGB")
    elif mode == 3:  # inpaint sketch
        image = inpaint_color_sketch
        orig = inpaint_color_sketch_orig or inpaint_color_sketch
        pred = np.any(np.array(image) != np.array(orig), axis=-1)
        mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
        mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
        blur = ImageFilter.GaussianBlur(mask_blur)
        image = Image.composite(image.filter(blur), orig, mask.filter(blur))
        image = image.convert("RGB")
    elif mode == 4:  # inpaint upload mask
        image = init_img_inpaint
        mask = init_mask_inpaint
    else:
        image = None
        mask = None

    # Use the EXIF orientation of photos taken by smartphones.
    if image is not None:
        image = ImageOps.exif_transpose(image)

    assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'

    p = StableDiffusionProcessingImg2Img(
        sd_model=shared.sd_model,
        outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
        outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
        prompt=prompt,
        negative_prompt=negative_prompt,
        styles=prompt_styles,
        seed=seed,
        subseed=subseed,
        subseed_strength=subseed_strength,
        seed_resize_from_h=seed_resize_from_h,
        seed_resize_from_w=seed_resize_from_w,
        seed_enable_extras=seed_enable_extras,
        sampler_name=sd_samplers.samplers_for_img2img[sampler_index].name,
        batch_size=batch_size,
        n_iter=n_iter,
        steps=steps,
        cfg_scale=cfg_scale,
        width=width,
        height=height,
        restore_faces=restore_faces,
        tiling=tiling,
        init_images=[image],
        mask=mask,
        mask_blur=mask_blur,
        inpainting_fill=inpainting_fill,
        resize_mode=resize_mode,
        denoising_strength=denoising_strength,
        image_cfg_scale=image_cfg_scale,
        inpaint_full_res=inpaint_full_res,
        inpaint_full_res_padding=inpaint_full_res_padding,
        inpainting_mask_invert=inpainting_mask_invert,
        override_settings=override_settings,
    )

    p.scripts = modules.scripts.scripts_txt2img
    p.script_args = args

    if shared.cmd_opts.enable_console_prompts:
        print(f"\nimg2img: {prompt}", file=shared.progress_print_out)

    p.extra_generation_params["Mask blur"] = mask_blur

    if is_batch:
        assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"

        process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args)

        processed = Processed(p, [], p.seed, "")
    else:
        processed = modules.scripts.scripts_img2img.run(p, *args)
        if processed is None:
            processed = process_images(p)

    p.close()

    shared.total_tqdm.clear()

    generation_info_js = processed.js()
    if opts.samples_log_stdout:
        print(generation_info_js)

    if opts.do_not_show_images:
        processed.images = []

    return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)