File size: 8,950 Bytes
ae26e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os

import numpy as np
import torch
from PIL import Image
from basicsr.utils.download_util import load_file_from_url

import modules.esrgan_model_arch as arch
from modules import shared, modelloader, images, devices
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import opts



def mod2normal(state_dict):
    # this code is copied from https://github.com/victorca25/iNNfer
    if 'conv_first.weight' in state_dict:
        crt_net = {}
        items = []
        for k, v in state_dict.items():
            items.append(k)

        crt_net['model.0.weight'] = state_dict['conv_first.weight']
        crt_net['model.0.bias'] = state_dict['conv_first.bias']

        for k in items.copy():
            if 'RDB' in k:
                ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
                if '.weight' in k:
                    ori_k = ori_k.replace('.weight', '.0.weight')
                elif '.bias' in k:
                    ori_k = ori_k.replace('.bias', '.0.bias')
                crt_net[ori_k] = state_dict[k]
                items.remove(k)

        crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight']
        crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias']
        crt_net['model.3.weight'] = state_dict['upconv1.weight']
        crt_net['model.3.bias'] = state_dict['upconv1.bias']
        crt_net['model.6.weight'] = state_dict['upconv2.weight']
        crt_net['model.6.bias'] = state_dict['upconv2.bias']
        crt_net['model.8.weight'] = state_dict['HRconv.weight']
        crt_net['model.8.bias'] = state_dict['HRconv.bias']
        crt_net['model.10.weight'] = state_dict['conv_last.weight']
        crt_net['model.10.bias'] = state_dict['conv_last.bias']
        state_dict = crt_net
    return state_dict


def resrgan2normal(state_dict, nb=23):
    # this code is copied from https://github.com/victorca25/iNNfer
    if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
        re8x = 0
        crt_net = {}
        items = []
        for k, v in state_dict.items():
            items.append(k)

        crt_net['model.0.weight'] = state_dict['conv_first.weight']
        crt_net['model.0.bias'] = state_dict['conv_first.bias']

        for k in items.copy():
            if "rdb" in k:
                ori_k = k.replace('body.', 'model.1.sub.')
                ori_k = ori_k.replace('.rdb', '.RDB')
                if '.weight' in k:
                    ori_k = ori_k.replace('.weight', '.0.weight')
                elif '.bias' in k:
                    ori_k = ori_k.replace('.bias', '.0.bias')
                crt_net[ori_k] = state_dict[k]
                items.remove(k)

        crt_net[f'model.1.sub.{nb}.weight'] = state_dict['conv_body.weight']
        crt_net[f'model.1.sub.{nb}.bias'] = state_dict['conv_body.bias']
        crt_net['model.3.weight'] = state_dict['conv_up1.weight']
        crt_net['model.3.bias'] = state_dict['conv_up1.bias']
        crt_net['model.6.weight'] = state_dict['conv_up2.weight']
        crt_net['model.6.bias'] = state_dict['conv_up2.bias']

        if 'conv_up3.weight' in state_dict:
            # modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py
            re8x = 3
            crt_net['model.9.weight'] = state_dict['conv_up3.weight']
            crt_net['model.9.bias'] = state_dict['conv_up3.bias']

        crt_net[f'model.{8+re8x}.weight'] = state_dict['conv_hr.weight']
        crt_net[f'model.{8+re8x}.bias'] = state_dict['conv_hr.bias']
        crt_net[f'model.{10+re8x}.weight'] = state_dict['conv_last.weight']
        crt_net[f'model.{10+re8x}.bias'] = state_dict['conv_last.bias']

        state_dict = crt_net
    return state_dict


def infer_params(state_dict):
    # this code is copied from https://github.com/victorca25/iNNfer
    scale2x = 0
    scalemin = 6
    n_uplayer = 0
    plus = False

    for block in list(state_dict):
        parts = block.split(".")
        n_parts = len(parts)
        if n_parts == 5 and parts[2] == "sub":
            nb = int(parts[3])
        elif n_parts == 3:
            part_num = int(parts[1])
            if (part_num > scalemin
                and parts[0] == "model"
                and parts[2] == "weight"):
                scale2x += 1
            if part_num > n_uplayer:
                n_uplayer = part_num
                out_nc = state_dict[block].shape[0]
        if not plus and "conv1x1" in block:
            plus = True

    nf = state_dict["model.0.weight"].shape[0]
    in_nc = state_dict["model.0.weight"].shape[1]
    out_nc = out_nc
    scale = 2 ** scale2x

    return in_nc, out_nc, nf, nb, plus, scale


class UpscalerESRGAN(Upscaler):
    def __init__(self, dirname):
        self.name = "ESRGAN"
        self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
        self.model_name = "ESRGAN_4x"
        self.scalers = []
        self.user_path = dirname
        super().__init__()
        model_paths = self.find_models(ext_filter=[".pt", ".pth"])
        scalers = []
        if len(model_paths) == 0:
            scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
            scalers.append(scaler_data)
        for file in model_paths:
            if "http" in file:
                name = self.model_name
            else:
                name = modelloader.friendly_name(file)

            scaler_data = UpscalerData(name, file, self, 4)
            self.scalers.append(scaler_data)

    def do_upscale(self, img, selected_model):
        model = self.load_model(selected_model)
        if model is None:
            return img
        model.to(devices.device_esrgan)
        img = esrgan_upscale(model, img)
        return img

    def load_model(self, path: str):
        if "http" in path:
            filename = load_file_from_url(url=self.model_url, model_dir=self.model_path,
                                          file_name="%s.pth" % self.model_name,
                                          progress=True)
        else:
            filename = path
        if not os.path.exists(filename) or filename is None:
            print("Unable to load %s from %s" % (self.model_path, filename))
            return None

        state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)

        if "params_ema" in state_dict:
            state_dict = state_dict["params_ema"]
        elif "params" in state_dict:
            state_dict = state_dict["params"]
            num_conv = 16 if "realesr-animevideov3" in filename else 32
            model = arch.SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=4, act_type='prelu')
            model.load_state_dict(state_dict)
            model.eval()
            return model

        if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
            nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
            state_dict = resrgan2normal(state_dict, nb)
        elif "conv_first.weight" in state_dict:
            state_dict = mod2normal(state_dict)
        elif "model.0.weight" not in state_dict:
            raise Exception("The file is not a recognized ESRGAN model.")

        in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)

        model = arch.RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
        model.load_state_dict(state_dict)
        model.eval()

        return model


def upscale_without_tiling(model, img):
    img = np.array(img)
    img = img[:, :, ::-1]
    img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
    img = torch.from_numpy(img).float()
    img = img.unsqueeze(0).to(devices.device_esrgan)
    with torch.no_grad():
        output = model(img)
    output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
    output = 255. * np.moveaxis(output, 0, 2)
    output = output.astype(np.uint8)
    output = output[:, :, ::-1]
    return Image.fromarray(output, 'RGB')


def esrgan_upscale(model, img):
    if opts.ESRGAN_tile == 0:
        return upscale_without_tiling(model, img)

    grid = images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap)
    newtiles = []
    scale_factor = 1

    for y, h, row in grid.tiles:
        newrow = []
        for tiledata in row:
            x, w, tile = tiledata

            output = upscale_without_tiling(model, tile)
            scale_factor = output.width // tile.width

            newrow.append([x * scale_factor, w * scale_factor, output])
        newtiles.append([y * scale_factor, h * scale_factor, newrow])

    newgrid = images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor)
    output = images.combine_grid(newgrid)
    return output