File size: 10,567 Bytes
d43d2a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# network module for kohya
# reference:
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
# https://github.com/kohya-ss/sd-scripts/blob/main/networks/lora.py
import math
from warnings import warn
import os
from typing import List
import torch
from .kohya_utils import *
from .locon import LoConModule
from .loha import LohaModule
def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs):
if network_dim is None:
network_dim = 4 # default
conv_dim = int(kwargs.get('conv_dim', network_dim))
conv_alpha = float(kwargs.get('conv_alpha', network_alpha))
dropout = float(kwargs.get('dropout', 0.))
algo = kwargs.get('algo', 'lora')
disable_cp = kwargs.get('disable_conv_cp', False)
network_module = {
'lora': LoConModule,
'loha': LohaModule,
}[algo]
print(f'Using rank adaptation algo: {algo}')
if (algo == 'loha'
and not kwargs.get('no_dim_warn', False)
and (network_dim>64 or conv_dim>64)):
print('='*20 + 'WARNING' + '='*20)
warn(
(
"You are not supposed to use dim>64 (64*64 = 4096, it already has enough rank)"
"in Hadamard Product representation!\n"
"Please consider use lower dim or disable this warning with --network_args no_dim_warn=True\n"
"If you just want to use high dim loha, please consider use lower lr."
),
stacklevel=2,
)
print('='*20 + 'WARNING' + '='*20)
network = LycorisNetwork(
text_encoder, unet,
multiplier=multiplier,
lora_dim=network_dim, conv_lora_dim=conv_dim,
alpha=network_alpha, conv_alpha=conv_alpha,
dropout=dropout,
use_cp=(not bool(disable_cp)),
network_module=network_module
)
return network
class LycorisNetwork(torch.nn.Module):
'''
LoRA + LoCon
'''
# Ignore proj_in or proj_out, their channels is only a few.
UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"Attention",
"ResnetBlock2D",
"Downsample2D",
"Upsample2D"
]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = 'lora_unet'
LORA_PREFIX_TEXT_ENCODER = 'lora_te'
def __init__(
self,
text_encoder, unet,
multiplier=1.0,
lora_dim=4, conv_lora_dim=4,
alpha=1, conv_alpha=1,
use_cp = True,
dropout = 0, network_module = LoConModule,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.conv_lora_dim = int(conv_lora_dim)
if self.conv_lora_dim != self.lora_dim:
print('Apply different lora dim for conv layer')
print(f'Conv Dim: {conv_lora_dim}, Linear Dim: {lora_dim}')
self.alpha = alpha
self.conv_alpha = float(conv_alpha)
if self.alpha != self.conv_alpha:
print('Apply different alpha value for conv layer')
print(f'Conv alpha: {conv_alpha}, Linear alpha: {alpha}')
if 1 >= dropout >= 0:
print(f'Use Dropout value: {dropout}')
self.dropout = dropout
# create module instances
def create_modules(prefix, root_module: torch.nn.Module, target_replace_modules) -> List[network_module]:
print('Create LyCORIS Module')
loras = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
lora_name = prefix + '.' + name + '.' + child_name
lora_name = lora_name.replace('.', '_')
if child_module.__class__.__name__ == 'Linear' and lora_dim>0:
lora = network_module(
lora_name, child_module, self.multiplier,
self.lora_dim, self.alpha, self.dropout, use_cp
)
elif child_module.__class__.__name__ == 'Conv2d':
k_size, *_ = child_module.kernel_size
if k_size==1 and lora_dim>0:
lora = network_module(
lora_name, child_module, self.multiplier,
self.lora_dim, self.alpha, self.dropout, use_cp
)
elif conv_lora_dim>0:
lora = network_module(
lora_name, child_module, self.multiplier,
self.conv_lora_dim, self.conv_alpha, self.dropout, use_cp
)
else:
continue
else:
continue
loras.append(lora)
return loras
self.text_encoder_loras = create_modules(
LycorisNetwork.LORA_PREFIX_TEXT_ENCODER,
text_encoder,
LycorisNetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
)
print(f"create LyCORIS for Text Encoder: {len(self.text_encoder_loras)} modules.")
self.unet_loras = create_modules(LycorisNetwork.LORA_PREFIX_UNET, unet, LycorisNetwork.UNET_TARGET_REPLACE_MODULE)
print(f"create LyCORIS for U-Net: {len(self.unet_loras)} modules.")
self.weights_sd = None
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == '.safetensors':
from safetensors.torch import load_file, safe_open
self.weights_sd = load_file(file)
else:
self.weights_sd = torch.load(file, map_location='cpu')
def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
if self.weights_sd:
weights_has_text_encoder = weights_has_unet = False
for key in self.weights_sd.keys():
if key.startswith(LycorisNetwork.LORA_PREFIX_TEXT_ENCODER):
weights_has_text_encoder = True
elif key.startswith(LycorisNetwork.LORA_PREFIX_UNET):
weights_has_unet = True
if apply_text_encoder is None:
apply_text_encoder = weights_has_text_encoder
else:
assert apply_text_encoder == weights_has_text_encoder, f"text encoder weights: {weights_has_text_encoder} but text encoder flag: {apply_text_encoder} / 重みとText Encoderのフラグが矛盾しています"
if apply_unet is None:
apply_unet = weights_has_unet
else:
assert apply_unet == weights_has_unet, f"u-net weights: {weights_has_unet} but u-net flag: {apply_unet} / 重みとU-Netのフラグが矛盾しています"
else:
assert apply_text_encoder is not None and apply_unet is not None, f"internal error: flag not set"
if apply_text_encoder:
print("enable LyCORIS for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LyCORIS for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
if self.weights_sd:
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
info = self.load_state_dict(self.weights_sd, False)
print(f"weights are loaded: {info}")
def enable_gradient_checkpointing(self):
# not supported
def make_ckpt(module):
if isinstance(module, torch.nn.Module):
module.grad_ckpt = True
self.apply(make_ckpt)
pass
def prepare_optimizer_params(self, text_encoder_lr, unet_lr):
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
self.requires_grad_(True)
all_params = []
if self.text_encoder_loras:
param_data = {'params': enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data['lr'] = text_encoder_lr
all_params.append(param_data)
if self.unet_loras:
param_data = {'params': enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data['lr'] = unet_lr
all_params.append(param_data)
return all_params
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == '.safetensors':
from safetensors.torch import save_file
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
|