File size: 8,552 Bytes
ae26e7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import sys
import traceback
from collections import namedtuple
from pathlib import Path
import re

import torch
import torch.hub

from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode

import modules.shared as shared
from modules import devices, paths, shared, lowvram, modelloader, errors

blip_image_eval_size = 384
clip_model_name = 'ViT-L/14'

Category = namedtuple("Category", ["name", "topn", "items"])

re_topn = re.compile(r"\.top(\d+)\.")

def category_types():
    return [f.stem for f in Path(shared.interrogator.content_dir).glob('*.txt')]


def download_default_clip_interrogate_categories(content_dir):
    print("Downloading CLIP categories...")

    tmpdir = content_dir + "_tmp"
    category_types = ["artists", "flavors", "mediums", "movements"]

    try:
        os.makedirs(tmpdir)
        for category_type in category_types:
            torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt"))
        os.rename(tmpdir, content_dir)

    except Exception as e:
        errors.display(e, "downloading default CLIP interrogate categories")
    finally:
        if os.path.exists(tmpdir):
            os.remove(tmpdir)


class InterrogateModels:
    blip_model = None
    clip_model = None
    clip_preprocess = None
    dtype = None
    running_on_cpu = None

    def __init__(self, content_dir):
        self.loaded_categories = None
        self.skip_categories = []
        self.content_dir = content_dir
        self.running_on_cpu = devices.device_interrogate == torch.device("cpu")

    def categories(self):
        if not os.path.exists(self.content_dir):
            download_default_clip_interrogate_categories(self.content_dir)

        if self.loaded_categories is not None and self.skip_categories == shared.opts.interrogate_clip_skip_categories:
           return self.loaded_categories

        self.loaded_categories = []

        if os.path.exists(self.content_dir):
            self.skip_categories = shared.opts.interrogate_clip_skip_categories
            category_types = []
            for filename in Path(self.content_dir).glob('*.txt'):
                category_types.append(filename.stem)
                if filename.stem in self.skip_categories:
                    continue
                m = re_topn.search(filename.stem)
                topn = 1 if m is None else int(m.group(1))
                with open(filename, "r", encoding="utf8") as file:
                    lines = [x.strip() for x in file.readlines()]

                self.loaded_categories.append(Category(name=filename.stem, topn=topn, items=lines))

        return self.loaded_categories

    def create_fake_fairscale(self):
        class FakeFairscale:
            def checkpoint_wrapper(self):
                pass

        sys.modules["fairscale.nn.checkpoint.checkpoint_activations"] = FakeFairscale

    def load_blip_model(self):
        self.create_fake_fairscale()
        import models.blip

        files = modelloader.load_models(
            model_path=os.path.join(paths.models_path, "BLIP"),
            model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth',
            ext_filter=[".pth"],
            download_name='model_base_caption_capfilt_large.pth',
        )

        blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
        blip_model.eval()

        return blip_model

    def load_clip_model(self):
        import clip

        if self.running_on_cpu:
            model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path)
        else:
            model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path)

        model.eval()
        model = model.to(devices.device_interrogate)

        return model, preprocess

    def load(self):
        if self.blip_model is None:
            self.blip_model = self.load_blip_model()
            if not shared.cmd_opts.no_half and not self.running_on_cpu:
                self.blip_model = self.blip_model.half()

        self.blip_model = self.blip_model.to(devices.device_interrogate)

        if self.clip_model is None:
            self.clip_model, self.clip_preprocess = self.load_clip_model()
            if not shared.cmd_opts.no_half and not self.running_on_cpu:
                self.clip_model = self.clip_model.half()

        self.clip_model = self.clip_model.to(devices.device_interrogate)

        self.dtype = next(self.clip_model.parameters()).dtype

    def send_clip_to_ram(self):
        if not shared.opts.interrogate_keep_models_in_memory:
            if self.clip_model is not None:
                self.clip_model = self.clip_model.to(devices.cpu)

    def send_blip_to_ram(self):
        if not shared.opts.interrogate_keep_models_in_memory:
            if self.blip_model is not None:
                self.blip_model = self.blip_model.to(devices.cpu)

    def unload(self):
        self.send_clip_to_ram()
        self.send_blip_to_ram()

        devices.torch_gc()

    def rank(self, image_features, text_array, top_count=1):
        import clip

        devices.torch_gc()

        if shared.opts.interrogate_clip_dict_limit != 0:
            text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]

        top_count = min(top_count, len(text_array))
        text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
        text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
        text_features /= text_features.norm(dim=-1, keepdim=True)

        similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
        for i in range(image_features.shape[0]):
            similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
        similarity /= image_features.shape[0]

        top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
        return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]

    def generate_caption(self, pil_image):
        gpu_image = transforms.Compose([
            transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
        ])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)

        with torch.no_grad():
            caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)

        return caption[0]

    def interrogate(self, pil_image):
        res = ""
        shared.state.begin()
        shared.state.job = 'interrogate'
        try:
            if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
                lowvram.send_everything_to_cpu()
                devices.torch_gc()

            self.load()

            caption = self.generate_caption(pil_image)
            self.send_blip_to_ram()
            devices.torch_gc()

            res = caption

            clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)

            with torch.no_grad(), devices.autocast():
                image_features = self.clip_model.encode_image(clip_image).type(self.dtype)

                image_features /= image_features.norm(dim=-1, keepdim=True)

                for name, topn, items in self.categories():
                    matches = self.rank(image_features, items, top_count=topn)
                    for match, score in matches:
                        if shared.opts.interrogate_return_ranks:
                            res += f", ({match}:{score/100:.3f})"
                        else:
                            res += ", " + match

        except Exception:
            print("Error interrogating", file=sys.stderr)
            print(traceback.format_exc(), file=sys.stderr)
            res += "<error>"

        self.unload()
        shared.state.end()

        return res