File size: 6,775 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from skimage.segmentation._slic import _enforce_label_connectivity_cython

def initWave(nPeriodic):
    buf = []
    for i in range(nPeriodic // 4+1):
        v = 0.5 + i / float(nPeriodic//4+1e-10)
        buf += [0, v, v, 0]
        buf += [0, -v, v, 0]  #so from other quadrants as well..
    buf = buf[:2*nPeriodic]
    awave = np.array(buf, dtype=np.float32) * np.pi
    awave = torch.FloatTensor(awave).unsqueeze(-1).unsqueeze(-1).unsqueeze(0)
    return awave

class SPADEGenerator(nn.Module):
    def __init__(self, hidden_dim):
        super().__init__()
        nf = hidden_dim // 16

        self.head_0 = SPADEResnetBlock(16 * nf, 16 * nf)

        self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf)
        self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf)

        self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf)
        self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf)
        self.up_2 = SPADEResnetBlock(4 * nf, nf)
        #self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf)

        final_nc = nf

        self.conv_img = nn.Conv2d(final_nc, 3, 3, padding=1)

        self.up = nn.Upsample(scale_factor=2)


    def forward(self, x, input):
        seg = input

        x = self.head_0(x, seg)

        x = self.up(x)
        x = self.G_middle_0(x, seg)
        x = self.G_middle_1(x, seg)

        x = self.up(x)
        x = self.up_0(x, seg)
        x = self.up(x)
        x = self.up_1(x, seg)
        x = self.up(x)
        x = self.up_2(x, seg)
        #x = self.up(x)
        #x = self.up_3(x, seg)

        x = self.conv_img(F.leaky_relu(x, 2e-1))
        return x

class SPADE(nn.Module):
    def __init__(self, norm_nc, label_nc):
        super().__init__()

        ks = 3

        self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)

        # The dimension of the intermediate embedding space. Yes, hardcoded.
        nhidden = 128

        pw = ks // 2
        self.mlp_shared = nn.Sequential(
            nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
            nn.ReLU()
        )
        self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
        self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)

    def forward(self, x, segmap):

        # Part 1. generate parameter-free normalized activations
        normalized = self.param_free_norm(x)

        # Part 2. produce scaling and bias conditioned on semantic map
        #segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
        segmap = F.interpolate(segmap, size=x.size()[2:], mode='bilinear', align_corners = False)
        actv = self.mlp_shared(segmap)
        gamma = self.mlp_gamma(actv)
        beta = self.mlp_beta(actv)

        # apply scale and bias
        out = normalized * (1 + gamma) + beta

        return out

class SPADEResnetBlock(nn.Module):
    def __init__(self, fin, fout):
        super().__init__()
        # Attributes
        self.learned_shortcut = (fin != fout)
        fmiddle = min(fin, fout)

        # create conv layers
        self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)
        self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)
        if self.learned_shortcut:
            self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)

        # define normalization layers
        self.norm_0 = SPADE(fin, 256)
        self.norm_1 = SPADE(fmiddle, 256)
        if self.learned_shortcut:
            self.norm_s = SPADE(fin, 256)

    # note the resnet block with SPADE also takes in |seg|,
    # the semantic segmentation map as input
    def forward(self, x, seg):
        x_s = self.shortcut(x, seg)

        dx = self.conv_0(self.actvn(self.norm_0(x, seg)))
        dx = self.conv_1(self.actvn(self.norm_1(dx, seg)))

        out = x_s + dx

        return out

    def shortcut(self, x, seg):
        if self.learned_shortcut:
            x_s = self.conv_s(self.norm_s(x, seg))
        else:
            x_s = x
        return x_s

    def actvn(self, x):
        return F.leaky_relu(x, 2e-1)

def get_edges(sp_label, sp_num):
    # This function returns a (hw) * (hw) matrix N.
    # If Nij = 1, then superpixel i and j are neighbors
    # Otherwise Nij = 0.
    top = sp_label[:, :, :-1, :] - sp_label[:, :, 1:, :]
    left = sp_label[:, :, :, :-1] - sp_label[:, :, :, 1:]
    top_left = sp_label[:, :, :-1, :-1] - sp_label[:, :, 1:, 1:]
    top_right = sp_label[:, :, :-1, 1:] - sp_label[:, :, 1:, :-1]
    n_affs = []
    edge_indices = []
    for i in range(sp_label.shape[0]):
        # change to torch.ones below to include self-loop in graph
        n_aff = torch.zeros(sp_num, sp_num).unsqueeze(0).to(sp_label.device)
        # top/bottom
        top_i = top[i].squeeze()
        x, y = torch.nonzero(top_i, as_tuple = True)
        sp1 = sp_label[i, :, x, y].squeeze().long()
        sp2 = sp_label[i, :, x+1, y].squeeze().long()
        n_aff[:, sp1, sp2] = 1
        n_aff[:, sp2, sp1] = 1

        # left/right
        left_i = left[i].squeeze()
        try:
            x, y = torch.nonzero(left_i, as_tuple = True)
        except:
            import pdb; pdb.set_trace()
        sp1 = sp_label[i, :, x, y].squeeze().long()
        sp2 = sp_label[i, :, x, y+1].squeeze().long()
        n_aff[:, sp1, sp2] = 1
        n_aff[:, sp2, sp1] = 1

        # top left
        top_left_i = top_left[i].squeeze()
        x, y = torch.nonzero(top_left_i, as_tuple = True)
        sp1 = sp_label[i, :, x, y].squeeze().long()
        sp2 = sp_label[i, :, x+1, y+1].squeeze().long()
        n_aff[:, sp1, sp2] = 1
        n_aff[:, sp2, sp1] = 1

        # top right
        top_right_i = top_right[i].squeeze()
        x, y = torch.nonzero(top_right_i, as_tuple = True)
        sp1 = sp_label[i, :, x, y+1].squeeze().long()
        sp2 = sp_label[i, :, x+1, y].squeeze().long()
        n_aff[:, sp1, sp2] = 1
        n_aff[:, sp2, sp1] = 1

        n_affs.append(n_aff)
        edge_index = torch.stack(torch.nonzero(n_aff.squeeze(), as_tuple=True))
        edge_indices.append(edge_index.to(sp_label.device))
    return edge_indices, torch.cat(n_affs)

def enforce_connectivity(segs, H, W, sp_num = 196, min_size = None, max_size = None):
    rets = []
    for i in range(segs.shape[0]):
        seg = segs[i]
        seg = seg.squeeze().cpu().numpy()

        segment_size = H * W / sp_num
        if min_size is None:
            min_size = int(0.1 * segment_size)
        if max_size is None:
            max_size = int(1000.0 * segment_size)
        seg = _enforce_label_connectivity_cython(seg[None], min_size, max_size)[0]
        seg = torch.from_numpy(seg).unsqueeze(0).unsqueeze(0)
        rets.append(seg)
    return torch.cat(rets)