File size: 3,941 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# From kmeans_pytorch

import numpy as np
import torch
from tqdm import tqdm


def initialize(X, num_clusters):
    """
    initialize cluster centers
    :param X: (torch.tensor) matrix
    :param num_clusters: (int) number of clusters
    :return: (np.array) initial state
    """
    num_samples = len(X)
    indices = np.random.choice(num_samples, num_clusters, replace=False)
    initial_state = X[indices]
    return initial_state


def kmeans(
        X,
        num_clusters,
        distance='euclidean',
        tol=1e-4,
        device=torch.device('cuda')
):
    """
    perform kmeans
    :param X: (torch.tensor) matrix
    :param num_clusters: (int) number of clusters
    :param distance: (str) distance [options: 'euclidean', 'cosine'] [default: 'euclidean']
    :param tol: (float) threshold [default: 0.0001]
    :param device: (torch.device) device [default: cpu]
    :return: (torch.tensor, torch.tensor) cluster ids, cluster centers
    """
    print(f'running k-means on {device}..')

    if distance == 'euclidean':
        pairwise_distance_function = pairwise_distance
    elif distance == 'cosine':
        pairwise_distance_function = pairwise_cosine
    else:
        raise NotImplementedError

    # convert to float
    X = X.float()

    # transfer to device
    X = X.to(device)

    # initialize
    initial_state = initialize(X, num_clusters)

    iteration = 0
    tqdm_meter = tqdm(desc='[running kmeans]')
    while True:
        dis = pairwise_distance_function(X, initial_state)

        choice_cluster = torch.argmin(dis, dim=1)

        initial_state_pre = initial_state.clone()

        for index in range(num_clusters):
            selected = torch.nonzero(choice_cluster == index).squeeze().to(device)

            selected = torch.index_select(X, 0, selected)
            initial_state[index] = selected.mean(dim=0)

        center_shift = torch.sum(
            torch.sqrt(
                torch.sum((initial_state - initial_state_pre) ** 2, dim=1)
            ))

        # increment iteration
        iteration = iteration + 1

        # update tqdm meter
        tqdm_meter.set_postfix(
            iteration=f'{iteration}',
            center_shift=f'{center_shift ** 2:0.6f}',
            tol=f'{tol:0.6f}'
        )
        tqdm_meter.update()
        if center_shift ** 2 < tol:
            break

    return choice_cluster, initial_state


def kmeans_predict(
        X,
        cluster_centers,
        distance='euclidean',
        device=torch.device('cpu')
):
    """
    predict using cluster centers
    :param X: (torch.tensor) matrix
    :param cluster_centers: (torch.tensor) cluster centers
    :param distance: (str) distance [options: 'euclidean', 'cosine'] [default: 'euclidean']
    :param device: (torch.device) device [default: 'cpu']
    :return: (torch.tensor) cluster ids
    """
    print(f'predicting on {device}..')

    if distance == 'euclidean':
        pairwise_distance_function = pairwise_distance
    elif distance == 'cosine':
        pairwise_distance_function = pairwise_cosine
    else:
        raise NotImplementedError

    # convert to float
    X = X.float()

    # transfer to device
    X = X.to(device)

    dis = pairwise_distance_function(X, cluster_centers)
    choice_cluster = torch.argmin(dis, dim=1)

    return choice_cluster.cpu()


def pairwise_distance(data1, data2):
    return torch.cdist(data1[None, :, :], data2[None, :, :])[0]


def pairwise_cosine(data1, data2):

    # N*1*M
    A = data1.unsqueeze(dim=1)

    # 1*N*M
    B = data2.unsqueeze(dim=0)

    # normalize the points  | [0.3, 0.4] -> [0.3/sqrt(0.09 + 0.16), 0.4/sqrt(0.09 + 0.16)] = [0.3/0.5, 0.4/0.5]
    A_normalized = A / A.norm(dim=-1, keepdim=True)
    B_normalized = B / B.norm(dim=-1, keepdim=True)

    cosine = A_normalized * B_normalized

    # return N*N matrix for pairwise distance
    cosine_dis = 1 - cosine.sum(dim=-1).squeeze()
    return cosine_dis