File size: 5,470 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import swapae.util as util
from .stylegan2_layers import Downsample


def gan_loss(pred, should_be_classified_as_real):
    bs = pred.size(0)
    if should_be_classified_as_real:
        return F.softplus(-pred).view(bs, -1).mean(dim=1)
    else:
        return F.softplus(pred).view(bs, -1).mean(dim=1)


def feature_matching_loss(xs, ys, equal_weights=False, num_layers=6):
    loss = 0.0
    for i, (x, y) in enumerate(zip(xs[:num_layers], ys[:num_layers])):
        if equal_weights:
            weight = 1.0 / min(num_layers, len(xs))
        else:
            weight = 1 / (2 ** (min(num_layers, len(xs)) - i))
        loss = loss + (x - y).abs().flatten(1).mean(1) * weight
    return loss


class IntraImageNCELoss(nn.Module):
    def __init__(self, opt):
        super().__init__()
        self.opt = opt
        self.cross_entropy_loss = nn.CrossEntropyLoss(reduction='mean')

    def forward(self, query, target):
        num_locations = min(query.size(2) * query.size(3), self.opt.intraimage_num_locations)
        bs = query.size(0)
        patch_ids = torch.randperm(num_locations, device=query.device)

        query = query.flatten(2, 3)
        target = target.flatten(2, 3)

        # both query and target are of size B x C x N
        query = query[:, :, patch_ids]
        target = target[:, :, patch_ids]

        cosine_similarity = torch.bmm(query.transpose(1, 2), target)
        cosine_similarity = cosine_similarity.flatten(0, 1)
        target_label = torch.arange(num_locations, dtype=torch.long, device=query.device).repeat(bs)
        loss = self.cross_entropy_loss(cosine_similarity / 0.07, target_label)
        return loss


class VGG16Loss(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.vgg_convs = torchvision.models.vgg16(pretrained=True).features
        self.register_buffer('mean',
                             torch.tensor([0.485, 0.456, 0.406])[None, :, None, None] - 0.5)
        self.register_buffer('stdev',
                             torch.tensor([0.229, 0.224, 0.225])[None, :, None, None] * 2)
        self.downsample = Downsample([1, 2, 1], factor=2)

    def copy_section(self, source, start, end):
        slice = torch.nn.Sequential()
        for i in range(start, end):
            slice.add_module(str(i), source[i])
        return slice

    def vgg_forward(self, x):
        x = (x - self.mean) / self.stdev
        features = []
        for name, layer in self.vgg_convs.named_children():
            if "MaxPool2d" == type(layer).__name__:
                features.append(x)
                if len(features) == 3:
                    break
                x = self.downsample(x)
            else:
                x = layer(x)
        return features

    def forward(self, x, y):
        y = y.detach()
        loss = 0
        weights = [1 / 32, 1 / 16, 1 / 8, 1 / 4, 1.0]
        #weights = [1] * 5
        total_weights = 0.0
        for i, (xf, yf) in enumerate(zip(self.vgg_forward(x), self.vgg_forward(y))):
            loss += F.l1_loss(xf, yf) * weights[i]
            total_weights += weights[i]
        return loss / total_weights


class NCELoss(nn.Module):
    def __init__(self):
        super().__init__()
        self.cross_entropy_loss = nn.CrossEntropyLoss(reduction='mean')

    def forward(self, query, target, negatives):
        query = util.normalize(query.flatten(1))
        target = util.normalize(target.flatten(1))
        negatives = util.normalize(negatives.flatten(1))
        bs = query.size(0)
        sim_pos = (query * target).sum(dim=1, keepdim=True)
        sim_neg = torch.mm(query, negatives.transpose(0, 1))
        all_similarity = torch.cat([sim_pos, sim_neg], axis=1) / 0.07
        #sim_target = util.compute_similarity_logit(query, target)
        #sim_target = torch.mm(query, target.transpose(0, 1)) / 0.07
        #sim_query = util.compute_similarity_logit(query, query)
        #util.set_diag_(sim_query, -20.0)

        #all_similarity = torch.cat([sim_target, sim_query], axis=1)

        #target_label = torch.arange(bs, dtype=torch.long,
        #                            device=query.device)
        target_label = torch.zeros(bs, dtype=torch.long, device=query.device)
        loss = self.cross_entropy_loss(all_similarity,
                                       target_label)
        return loss


class ScaleInvariantReconstructionLoss(nn.Module):
    def forward(self, query, target):
        query_flat = query.transpose(1, 3)
        target_flat = target.transpose(1, 3)
        dist = 1.0 - torch.bmm(
            query_flat[:, :, :, None, :].flatten(0, 2),
            target_flat[:, :, :, :, None].flatten(0, 2),
        )

        target_spatially_flat = target.flatten(1, 2)
        num_samples = min(target_spatially_flat.size(1), 64)
        random_indices = torch.randperm(num_samples, dtype=torch.long, device=target.device)
        randomly_sampled = target_spatially_flat[:, random_indices]
        random_indices = torch.randperm(num_samples, dtype=torch.long, device=target.device)
        another_random_sample = target_spatially_flat[:, random_indices]

        random_similarity = torch.bmm(
            randomly_sampled[:, :, None, :].flatten(0, 1),
            torch.flip(another_random_sample, [0])[:, :, :, None].flatten(0, 1)
        )

        return dist.mean() + random_similarity.clamp(min=0.0).mean()