File size: 11,374 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""VQGAN Loss
 - Adapted from https://github.com/CompVis/taming-transformers
"""
import torch
import torch.nn as nn
import torch.nn.functional as F

from .discriminator import NLayerDiscriminator, weights_init
from .blocks import LossCriterion, LossCriterionMask

class DummyLoss(nn.Module):
    def __init__(self):
        super().__init__()


def adopt_weight(weight, global_step, threshold=0, value=0.):
    if global_step < threshold:
        weight = value
    return weight


def hinge_d_loss(logits_real, logits_fake):
    loss_real = torch.mean(F.relu(1. - logits_real))
    loss_fake = torch.mean(F.relu(1. + logits_fake))
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss


def vanilla_d_loss(logits_real, logits_fake):
    d_loss = 0.5 * (
        torch.mean(torch.nn.functional.softplus(-logits_real)) +
        torch.mean(torch.nn.functional.softplus(logits_fake)))
    return d_loss

def fft_loss(pred, tgt):
    return ((torch.fft.fftn(pred, dim=(-2,-1)) - torch.fft.fftn(tgt, dim=(-2,-1)))).abs().mean()

class LPIPSWithDiscriminator(nn.Module):
    def __init__(self, disc_start, model_path, pixelloss_weight=1.0,
                 disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=0.8,
                 perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
                 disc_ndf=64, disc_loss="hinge", rec_loss="FFT",
                 style_layers = [], content_layers = ['r41']):
        super().__init__()
        assert disc_loss in ["hinge", "vanilla"]
        self.pixel_weight = pixelloss_weight
        self.perceptual_loss = LossCriterion(style_layers, content_layers, 
                                             0, perceptual_weight,
                                             model_path = model_path)

        self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
                                                 n_layers=disc_num_layers,
                                                 use_actnorm=use_actnorm,
                                                 ndf=disc_ndf
                                                 ).apply(weights_init)
        self.discriminator_iter_start = disc_start
        if disc_loss == "hinge":
            self.disc_loss = hinge_d_loss
        elif disc_loss == "vanilla":
            self.disc_loss = vanilla_d_loss
        else:
            raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
        print(f"VQLPIPSWithDiscriminator running with {disc_loss} and {rec_loss} loss.")
        self.disc_factor = disc_factor
        self.discriminator_weight = disc_weight
        self.disc_conditional = disc_conditional

        self.rec_loss = rec_loss
        self.perceptual_weight = perceptual_weight

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        if last_layer is not None:
            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
        else:
            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        d_weight = d_weight * self.discriminator_weight
        return d_weight

    def forward(self, inputs, reconstructions, optimizer_idx,
                global_step, last_layer=None, cond=None, split="train"):
        if self.rec_loss == "L1":
            rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()).mean()
        elif self.rec_loss == "MSE":
            rec_loss = F.mse_loss(reconstructions, inputs)
        elif self.rec_loss == "FFT":
            rec_loss = fft_loss(inputs, reconstructions)
        elif self.rec_loss is None:
            rec_loss = 0
        else:
            raise ValueError("Unkown reconstruction loss, choices are [FFT, L1]")

        if self.perceptual_weight > 0:
            loss_dict = self.perceptual_loss(reconstructions, inputs, style = False)
            p_loss = loss_dict['content']
            rec_loss = rec_loss + p_loss
        else:
            p_loss = torch.zeros(1).cuda()
        nll_loss = rec_loss

        # adversarial loss for both branches
        if optimizer_idx == 0:
            log = {}
            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            # generator update
            if disc_factor > 0:
                logits_fake = self.discriminator(reconstructions.contiguous())
                g_loss = -torch.mean(logits_fake)

                try:
                    d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
                except RuntimeError:
                    #assert not self.training
                    d_weight = torch.tensor(0.0)
                loss = nll_loss + d_weight * disc_factor * g_loss
                log["d_weight"] = d_weight.detach()
                log["disc_factor"] = torch.tensor(disc_factor)
                log["g_loss"] = g_loss.detach().mean()
            else:
                loss = nll_loss

            log["total_loss"] = loss.clone().detach().mean()
            log["nll_loss"] = nll_loss.detach().mean()
            log["rec_loss"] = rec_loss.detach().mean()
            log["p_loss"] = p_loss.detach().mean()
            return loss, log

        if optimizer_idx == 1:
            # second pass for discriminator update
            logits_real = self.discriminator(inputs.contiguous().detach())
            logits_fake = self.discriminator(reconstructions.contiguous().detach())

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)

            log = {"disc_loss": d_loss.clone().detach().mean(),
                   "logits_real": logits_real.detach().mean(),
                   "logits_fake": logits_fake.detach().mean()
                   }
            return d_loss, log

class LPIPSWithDiscriminatorMask(nn.Module):
    def __init__(self, disc_start, model_path, pixelloss_weight=1.0,
                 disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=0.8,
                 perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
                 disc_ndf=64, disc_loss="hinge", rec_loss="FFT",
                 style_layers = [], content_layers = ['r41']):
        super().__init__()
        assert disc_loss in ["hinge", "vanilla"]
        self.pixel_weight = pixelloss_weight
        self.perceptual_loss = LossCriterionMask(style_layers, content_layers, 
                                                 0.2, perceptual_weight,
                                                 model_path = model_path)

        self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
                                                 n_layers=disc_num_layers,
                                                 use_actnorm=use_actnorm,
                                                 ndf=disc_ndf
                                                 ).apply(weights_init)
        self.discriminator_iter_start = disc_start
        if disc_loss == "hinge":
            self.disc_loss = hinge_d_loss
        elif disc_loss == "vanilla":
            self.disc_loss = vanilla_d_loss
        else:
            raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
        print(f"VQLPIPSWithDiscriminator running with {disc_loss} and {rec_loss} loss.")
        self.disc_factor = disc_factor
        self.discriminator_weight = disc_weight
        self.disc_conditional = disc_conditional

        self.rec_loss = rec_loss
        self.perceptual_weight = perceptual_weight

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        if last_layer is not None:
            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
        else:
            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        d_weight = d_weight * self.discriminator_weight
        return d_weight

    def forward(self, inputs, reconstructions, optimizer_idx,
                global_step, mask, last_layer=None, cond=None, split="train"):
        if self.rec_loss == "L1":
            rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()).mean()
        elif self.rec_loss == "MSE":
            rec_loss = F.mse_loss(reconstructions, inputs)
        elif self.rec_loss == "FFT":
            rec_loss = fft_loss(inputs, reconstructions)
        elif self.rec_loss is None:
            rec_loss = 0
        else:
            raise ValueError("Unkown reconstruction loss, choices are [FFT, L1]")

        if self.perceptual_weight > 0:
            loss_dict = self.perceptual_loss(reconstructions, inputs, mask, style = True)
            p_loss = loss_dict['content']
            s_loss = loss_dict['style']
            rec_loss = rec_loss + p_loss + s_loss
        else:
            p_loss = torch.zeros(1).cuda()
        nll_loss = rec_loss

        # adversarial loss for both branches
        if optimizer_idx == 0:
            # generator update
            logits_fake = self.discriminator(reconstructions.contiguous())
            g_loss = -torch.mean(logits_fake)

            try:
                d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
            except RuntimeError:
                #assert not self.training
                d_weight = torch.tensor(0.0)

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            loss = nll_loss + d_weight * disc_factor * g_loss

            log = {"total_loss": loss.clone().detach().mean(),
                   "nll_loss": nll_loss.detach().mean(),
                   "rec_loss": rec_loss.detach().mean(),
                   "p_loss": p_loss.detach().mean(),
                   "s_loss": s_loss,
                   "d_weight": d_weight.detach(),
                   "disc_factor": torch.tensor(disc_factor),
                   "g_loss": g_loss.detach().mean(),
                   }
            return loss, log

        if optimizer_idx == 1:
            # second pass for discriminator update
            logits_real = self.discriminator(inputs.contiguous().detach())
            logits_fake = self.discriminator(reconstructions.contiguous().detach())

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)

            log = {"disc_loss": d_loss.clone().detach().mean(),
                   "logits_real": logits_real.detach().mean(),
                   "logits_fake": logits_fake.detach().mean()
                   }
            return d_loss, log