Spaces:
Runtime error
Runtime error
File size: 6,916 Bytes
1b2a9b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import math
import torch
import swapae.util as util
import torch.nn.functional as F
from swapae.models.networks import BaseNetwork
from swapae.models.networks.stylegan2_layers import ConvLayer, ToRGB, EqualLinear, StyledConv
class UpsamplingBlock(torch.nn.Module):
def __init__(self, inch, outch, styledim,
blur_kernel=[1, 3, 3, 1], use_noise=False):
super().__init__()
self.inch, self.outch, self.styledim = inch, outch, styledim
self.conv1 = StyledConv(inch, outch, 3, styledim, upsample=True,
blur_kernel=blur_kernel, use_noise=use_noise)
self.conv2 = StyledConv(outch, outch, 3, styledim, upsample=False,
use_noise=use_noise)
def forward(self, x, style):
return self.conv2(self.conv1(x, style), style)
class ResolutionPreservingResnetBlock(torch.nn.Module):
def __init__(self, opt, inch, outch, styledim):
super().__init__()
self.conv1 = StyledConv(inch, outch, 3, styledim, upsample=False)
self.conv2 = StyledConv(outch, outch, 3, styledim, upsample=False)
if inch != outch:
self.skip = ConvLayer(inch, outch, 1, activate=False, bias=False)
else:
self.skip = torch.nn.Identity()
def forward(self, x, style):
skip = self.skip(x)
res = self.conv2(self.conv1(x, style), style)
return (skip + res) / math.sqrt(2)
class UpsamplingResnetBlock(torch.nn.Module):
def __init__(self, inch, outch, styledim, blur_kernel=[1, 3, 3, 1], use_noise=False):
super().__init__()
self.inch, self.outch, self.styledim = inch, outch, styledim
self.conv1 = StyledConv(inch, outch, 3, styledim, upsample=True, blur_kernel=blur_kernel, use_noise=use_noise)
self.conv2 = StyledConv(outch, outch, 3, styledim, upsample=False, use_noise=use_noise)
if inch != outch:
self.skip = ConvLayer(inch, outch, 1, activate=True, bias=True)
else:
self.skip = torch.nn.Identity()
def forward(self, x, style):
skip = F.interpolate(self.skip(x), scale_factor=2, mode='bilinear', align_corners=False)
res = self.conv2(self.conv1(x, style), style)
return (skip + res) / math.sqrt(2)
class GeneratorModulation(torch.nn.Module):
def __init__(self, styledim, outch):
super().__init__()
self.scale = EqualLinear(styledim, outch)
self.bias = EqualLinear(styledim, outch)
def forward(self, x, style):
if style.ndimension() <= 2:
return x * (1 * self.scale(style)[:, :, None, None]) + self.bias(style)[:, :, None, None]
else:
style = F.interpolate(style, size=(x.size(2), x.size(3)), mode='bilinear', align_corners=False)
return x * (1 * self.scale(style)) + self.bias(style)
class StyleGAN2ResnetGenerator(BaseNetwork):
""" The Generator (decoder) architecture described in Figure 18 of
Swapping Autoencoder (https://arxiv.org/abs/2007.00653).
At high level, the architecture consists of regular and
upsampling residual blocks to transform the structure code into an RGB
image. The global code is applied at each layer as modulation.
Here's more detailed architecture:
1. SpatialCodeModulation: First of all, modulate the structure code
with the global code.
2. HeadResnetBlock: resnets at the resolution of the structure code,
which also incorporates modulation from the global code.
3. UpsamplingResnetBlock: resnets that upsamples by factor of 2 until
the resolution of the output RGB image, along with the global code
modulation.
4. ToRGB: Final layer that transforms the output into 3 channels (RGB).
Each components of the layers borrow heavily from StyleGAN2 code,
implemented by Seonghyeon Kim.
https://github.com/rosinality/stylegan2-pytorch
"""
@staticmethod
def modify_commandline_options(parser, is_train):
parser.add_argument("--netG_scale_capacity", default=1.0, type=float)
parser.add_argument(
"--netG_num_base_resnet_layers",
default=2, type=int,
help="The number of resnet layers before the upsampling layers."
)
parser.add_argument("--netG_use_noise", type=util.str2bool, nargs='?', const=True, default=True)
parser.add_argument("--netG_resnet_ch", type=int, default=256)
return parser
def __init__(self, opt):
super().__init__(opt)
num_upsamplings = opt.netE_num_downsampling_sp
blur_kernel = [1, 3, 3, 1] if opt.use_antialias else [1]
self.global_code_ch = opt.global_code_ch + opt.num_classes
self.add_module(
"SpatialCodeModulation",
GeneratorModulation(self.global_code_ch, opt.spatial_code_ch))
in_channel = opt.spatial_code_ch
for i in range(opt.netG_num_base_resnet_layers):
# gradually increase the number of channels
out_channel = (i + 1) / opt.netG_num_base_resnet_layers * self.nf(0)
out_channel = max(opt.spatial_code_ch, round(out_channel))
layer_name = "HeadResnetBlock%d" % i
new_layer = ResolutionPreservingResnetBlock(
opt, in_channel, out_channel, self.global_code_ch)
self.add_module(layer_name, new_layer)
in_channel = out_channel
for j in range(num_upsamplings):
out_channel = self.nf(j + 1)
layer_name = "UpsamplingResBlock%d" % (2 ** (4 + j))
new_layer = UpsamplingResnetBlock(
in_channel, out_channel, self.global_code_ch,
blur_kernel, opt.netG_use_noise)
self.add_module(layer_name, new_layer)
in_channel = out_channel
last_layer = ToRGB(out_channel, self.global_code_ch,
blur_kernel=blur_kernel)
self.add_module("ToRGB", last_layer)
def nf(self, num_up):
ch = 128 * (2 ** (self.opt.netE_num_downsampling_sp - num_up))
ch = int(min(512, ch) * self.opt.netG_scale_capacity)
return ch
def forward(self, spatial_code, global_code):
spatial_code = util.normalize(spatial_code)
global_code = util.normalize(global_code)
x = self.SpatialCodeModulation(spatial_code, global_code)
for i in range(self.opt.netG_num_base_resnet_layers):
resblock = getattr(self, "HeadResnetBlock%d" % i)
x = resblock(x, global_code)
for j in range(self.opt.netE_num_downsampling_sp):
key_name = 2 ** (4 + j)
upsampling_layer = getattr(self, "UpsamplingResBlock%d" % key_name)
x = upsampling_layer(x, global_code)
rgb = self.ToRGB(x, global_code, None)
return rgb
|