File size: 6,769 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import torch.nn as nn
import torch.nn.functional as F


class PositionEmbs(nn.Module):
    def __init__(self, num_patches, emb_dim, dropout_rate=0.1):
        super(PositionEmbs, self).__init__()
        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, emb_dim))
        if dropout_rate > 0:
            self.dropout = nn.Dropout(dropout_rate)
        else:
            self.dropout = None

    def forward(self, x):
        out = x + self.pos_embedding

        if self.dropout:
            out = self.dropout(out)

        return out


class MlpBlock(nn.Module):
    """ Transformer Feed-Forward Block """
    def __init__(self, in_dim, mlp_dim, out_dim, dropout_rate=0.1):
        super(MlpBlock, self).__init__()

        # init layers
        self.fc1 = nn.Linear(in_dim, mlp_dim)
        self.fc2 = nn.Linear(mlp_dim, out_dim)
        self.act = nn.GELU()
        if dropout_rate > 0.0:
            self.dropout1 = nn.Dropout(dropout_rate)
            self.dropout2 = nn.Dropout(dropout_rate)
        else:
            self.dropout1 = None
            self.dropout2 = None

    def forward(self, x):

        out = self.fc1(x)
        out = self.act(out)
        if self.dropout1:
            out = self.dropout1(out)

        out = self.fc2(out)
        if self.dropout2:
            out = self.dropout2(out)
        return out


class LinearGeneral(nn.Module):
    def __init__(self, in_dim=(768,), feat_dim=(12, 64)):
        super(LinearGeneral, self).__init__()

        self.weight = nn.Parameter(torch.randn(*in_dim, *feat_dim))
        self.bias = nn.Parameter(torch.zeros(*feat_dim))

    def forward(self, x, dims):
        a = torch.tensordot(x, self.weight, dims=dims) + self.bias
        return a


class SelfAttention(nn.Module):
    def __init__(self, in_dim, heads=8, dropout_rate=0.1):
        super(SelfAttention, self).__init__()
        self.heads = heads
        self.head_dim = in_dim // heads
        self.scale = self.head_dim ** 0.5

        self.query = LinearGeneral((in_dim,), (self.heads, self.head_dim))
        self.key = LinearGeneral((in_dim,), (self.heads, self.head_dim))
        self.value = LinearGeneral((in_dim,), (self.heads, self.head_dim))
        self.out = LinearGeneral((self.heads, self.head_dim), (in_dim,))

        if dropout_rate > 0:
            self.dropout = nn.Dropout(dropout_rate)
        else:
            self.dropout = None
        
        self.cluster_mlp = nn.Sequential(nn.Linear(256 * 100, 64 * 100),
                                         nn.LeakyReLU(0.2),
                                         nn.Linear(64 * 100, 8 * 100))
        
    def forward(self, x):
        b, n, _ = x.shape

        q = self.query(x, dims=([2], [0]))
        q = self.cluster_mlp(q.view(b, -1)).view(b, 8, 1, 100)
        k = self.key(x, dims=([2], [0]))
        v = self.value(x, dims=([2], [0]))

        q = q.permute(0, 2, 1, 3)
        k = k.permute(0, 2, 1, 3)
        v = v.permute(0, 2, 1, 3)

        attn_weights = torch.matmul(q, k.transpose(-2, -1)) / self.scale
        attn_weights = F.softmax(attn_weights, dim=-1)
        out = torch.matmul(attn_weights, v)
        out = out.permute(0, 2, 1, 3)

        out = self.out(out, dims=([2, 3], [0, 1]))

        return out


class EncoderBlock(nn.Module):
    def __init__(self, in_dim, mlp_dim, num_heads, dropout_rate=0.1, attn_dropout_rate=0.1):
        super(EncoderBlock, self).__init__()

        self.norm1 = nn.LayerNorm(in_dim)
        self.attn = SelfAttention(in_dim, heads=num_heads, dropout_rate=attn_dropout_rate)
        if dropout_rate > 0:
            self.dropout = nn.Dropout(dropout_rate)
        else:
            self.dropout = None
        self.norm2 = nn.LayerNorm(in_dim)
        self.mlp = MlpBlock(in_dim, mlp_dim, in_dim, dropout_rate)

    def forward(self, x):
        residual = x
        out = self.norm1(x)
        out = self.attn(out)
        if self.dropout:
            out = self.dropout(out)
        #out += residual
        residual = out

        out = self.norm2(out)
        out = self.mlp(out)
        out += residual
        return out


class Encoder(nn.Module):
    def __init__(self, num_patches, emb_dim, mlp_dim, num_layers=12, num_heads=12, dropout_rate=0.1, attn_dropout_rate=0.0):
        super(Encoder, self).__init__()

        # positional embedding
        self.pos_embedding = PositionEmbs(num_patches, emb_dim, dropout_rate)

        # encoder blocks
        in_dim = emb_dim
        self.encoder_layers = nn.ModuleList()
        for i in range(num_layers):
            layer = EncoderBlock(in_dim, mlp_dim, num_heads, dropout_rate, attn_dropout_rate)
            self.encoder_layers.append(layer)
        self.norm = nn.LayerNorm(in_dim)

    def forward(self, x):

        out = self.pos_embedding(x)

        for layer in self.encoder_layers:
            out = layer(out)

        out = self.norm(out)
        return out

class VisionTransformer(nn.Module):
    """ Vision Transformer """
    def __init__(self,
                 image_size=(256, 256),
                 patch_size=(16, 16),
                 emb_dim=768,
                 mlp_dim=3072,
                 num_heads=12,
                 num_layers=12,
                 num_classes=1000,
                 attn_dropout_rate=0.0,
                 dropout_rate=0.1,
                 feat_dim=None):
        super(VisionTransformer, self).__init__()
        h, w = image_size

        # embedding layer
        fh, fw = patch_size
        gh, gw = h // fh, w // fw
        num_patches = gh * gw
        self.embedding = nn.Conv2d(3, emb_dim, kernel_size=(fh, fw), stride=(fh, fw))
        # class token
        self.cls_token = nn.Parameter(torch.zeros(1, 1, emb_dim))

        # transformer
        self.transformer = Encoder(
            num_patches=num_patches,
            emb_dim=emb_dim,
            mlp_dim=mlp_dim,
            num_layers=num_layers,
            num_heads=num_heads,
            dropout_rate=dropout_rate,
            attn_dropout_rate=attn_dropout_rate)

        # classfier
        self.classifier = nn.Linear(emb_dim, num_classes)

    def forward(self, x):
        emb = self.embedding(x)     # (n, c, gh, gw)
        emb = emb.permute(0, 2, 3, 1)  # (n, gh, hw, c)
        b, h, w, c = emb.shape
        emb = emb.reshape(b, h * w, c)

        # prepend class token
        cls_token = self.cls_token.repeat(b, 1, 1)
        emb = torch.cat([cls_token, emb], dim=1)

        # transformer
        feat = self.transformer(emb)

        # classifier
        logits = self.classifier(feat[:, 0])
        return logits

if __name__ == '__main__':
    model = VisionTransformer(num_layers=2)
    import pdb; pdb.set_trace()
    x = torch.randn((2, 3, 256, 256))
    out = model(x)