Spaces:
Runtime error
Runtime error
File size: 6,769 Bytes
1b2a9b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionEmbs(nn.Module):
def __init__(self, num_patches, emb_dim, dropout_rate=0.1):
super(PositionEmbs, self).__init__()
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, emb_dim))
if dropout_rate > 0:
self.dropout = nn.Dropout(dropout_rate)
else:
self.dropout = None
def forward(self, x):
out = x + self.pos_embedding
if self.dropout:
out = self.dropout(out)
return out
class MlpBlock(nn.Module):
""" Transformer Feed-Forward Block """
def __init__(self, in_dim, mlp_dim, out_dim, dropout_rate=0.1):
super(MlpBlock, self).__init__()
# init layers
self.fc1 = nn.Linear(in_dim, mlp_dim)
self.fc2 = nn.Linear(mlp_dim, out_dim)
self.act = nn.GELU()
if dropout_rate > 0.0:
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
else:
self.dropout1 = None
self.dropout2 = None
def forward(self, x):
out = self.fc1(x)
out = self.act(out)
if self.dropout1:
out = self.dropout1(out)
out = self.fc2(out)
if self.dropout2:
out = self.dropout2(out)
return out
class LinearGeneral(nn.Module):
def __init__(self, in_dim=(768,), feat_dim=(12, 64)):
super(LinearGeneral, self).__init__()
self.weight = nn.Parameter(torch.randn(*in_dim, *feat_dim))
self.bias = nn.Parameter(torch.zeros(*feat_dim))
def forward(self, x, dims):
a = torch.tensordot(x, self.weight, dims=dims) + self.bias
return a
class SelfAttention(nn.Module):
def __init__(self, in_dim, heads=8, dropout_rate=0.1):
super(SelfAttention, self).__init__()
self.heads = heads
self.head_dim = in_dim // heads
self.scale = self.head_dim ** 0.5
self.query = LinearGeneral((in_dim,), (self.heads, self.head_dim))
self.key = LinearGeneral((in_dim,), (self.heads, self.head_dim))
self.value = LinearGeneral((in_dim,), (self.heads, self.head_dim))
self.out = LinearGeneral((self.heads, self.head_dim), (in_dim,))
if dropout_rate > 0:
self.dropout = nn.Dropout(dropout_rate)
else:
self.dropout = None
self.cluster_mlp = nn.Sequential(nn.Linear(256 * 100, 64 * 100),
nn.LeakyReLU(0.2),
nn.Linear(64 * 100, 8 * 100))
def forward(self, x):
b, n, _ = x.shape
q = self.query(x, dims=([2], [0]))
q = self.cluster_mlp(q.view(b, -1)).view(b, 8, 1, 100)
k = self.key(x, dims=([2], [0]))
v = self.value(x, dims=([2], [0]))
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / self.scale
attn_weights = F.softmax(attn_weights, dim=-1)
out = torch.matmul(attn_weights, v)
out = out.permute(0, 2, 1, 3)
out = self.out(out, dims=([2, 3], [0, 1]))
return out
class EncoderBlock(nn.Module):
def __init__(self, in_dim, mlp_dim, num_heads, dropout_rate=0.1, attn_dropout_rate=0.1):
super(EncoderBlock, self).__init__()
self.norm1 = nn.LayerNorm(in_dim)
self.attn = SelfAttention(in_dim, heads=num_heads, dropout_rate=attn_dropout_rate)
if dropout_rate > 0:
self.dropout = nn.Dropout(dropout_rate)
else:
self.dropout = None
self.norm2 = nn.LayerNorm(in_dim)
self.mlp = MlpBlock(in_dim, mlp_dim, in_dim, dropout_rate)
def forward(self, x):
residual = x
out = self.norm1(x)
out = self.attn(out)
if self.dropout:
out = self.dropout(out)
#out += residual
residual = out
out = self.norm2(out)
out = self.mlp(out)
out += residual
return out
class Encoder(nn.Module):
def __init__(self, num_patches, emb_dim, mlp_dim, num_layers=12, num_heads=12, dropout_rate=0.1, attn_dropout_rate=0.0):
super(Encoder, self).__init__()
# positional embedding
self.pos_embedding = PositionEmbs(num_patches, emb_dim, dropout_rate)
# encoder blocks
in_dim = emb_dim
self.encoder_layers = nn.ModuleList()
for i in range(num_layers):
layer = EncoderBlock(in_dim, mlp_dim, num_heads, dropout_rate, attn_dropout_rate)
self.encoder_layers.append(layer)
self.norm = nn.LayerNorm(in_dim)
def forward(self, x):
out = self.pos_embedding(x)
for layer in self.encoder_layers:
out = layer(out)
out = self.norm(out)
return out
class VisionTransformer(nn.Module):
""" Vision Transformer """
def __init__(self,
image_size=(256, 256),
patch_size=(16, 16),
emb_dim=768,
mlp_dim=3072,
num_heads=12,
num_layers=12,
num_classes=1000,
attn_dropout_rate=0.0,
dropout_rate=0.1,
feat_dim=None):
super(VisionTransformer, self).__init__()
h, w = image_size
# embedding layer
fh, fw = patch_size
gh, gw = h // fh, w // fw
num_patches = gh * gw
self.embedding = nn.Conv2d(3, emb_dim, kernel_size=(fh, fw), stride=(fh, fw))
# class token
self.cls_token = nn.Parameter(torch.zeros(1, 1, emb_dim))
# transformer
self.transformer = Encoder(
num_patches=num_patches,
emb_dim=emb_dim,
mlp_dim=mlp_dim,
num_layers=num_layers,
num_heads=num_heads,
dropout_rate=dropout_rate,
attn_dropout_rate=attn_dropout_rate)
# classfier
self.classifier = nn.Linear(emb_dim, num_classes)
def forward(self, x):
emb = self.embedding(x) # (n, c, gh, gw)
emb = emb.permute(0, 2, 3, 1) # (n, gh, hw, c)
b, h, w, c = emb.shape
emb = emb.reshape(b, h * w, c)
# prepend class token
cls_token = self.cls_token.repeat(b, 1, 1)
emb = torch.cat([cls_token, emb], dim=1)
# transformer
feat = self.transformer(emb)
# classifier
logits = self.classifier(feat[:, 0])
return logits
if __name__ == '__main__':
model = VisionTransformer(num_layers=2)
import pdb; pdb.set_trace()
x = torch.randn((2, 3, 256, 256))
out = model(x) |