File size: 5,217 Bytes
1b2a9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""SLIC dataset
 - Returns an image together with its SLIC segmentation map.
"""
import torch
import torch.utils.data as data
import torchvision.transforms as transforms

import numpy as np
from glob import glob
from PIL import Image
import torch.nn.functional as F
import torchvision.transforms.functional as TF

from .custom_transform import *

class Dataset(data.Dataset):
    def __init__(self, data_dir, img_size=256, crop_size=128, test=False, 
                 sp_num=256, slic = True, lab = False): 
        super(Dataset, self).__init__()
        #self.data_list = glob(os.path.join(data_dir, "*.jpg"))
        ext = ["*.jpg"]
        dl = []
        [dl.extend(glob(data_dir + '/**/' + e, recursive=True)) for e in ext]
        self.data_list = dl
        self.sp_num = sp_num
        self.slic = slic
        self.lab = lab
        if test:
            self.transform = transforms.Compose([
                             transforms.Resize(img_size),
                             transforms.CenterCrop(crop_size)])
        else:
            self.transform = transforms.Compose([
                             transforms.Resize(int(img_size)),
                             transforms.RandomCrop(crop_size)])

        N = len(self.data_list)
        # eqv transform
        self.random_horizontal_flip = RandomHorizontalTensorFlip(N=N)
        self.random_vertical_flip   = RandomVerticalFlip(N=N)
        self.random_resized_crop    = RandomResizedCrop(N=N, res=256)

        # photometric transform
        self.random_color_brightness = [RandomColorBrightness(x=0.3, p=0.8, N=N) for _ in range(2)] # Control this later (NOTE)]
        self.random_color_contrast   = [RandomColorContrast(x=0.3, p=0.8, N=N) for _ in range(2)] # Control this later (NOTE)
        self.random_color_saturation = [RandomColorSaturation(x=0.3, p=0.8, N=N) for _ in range(2)] # Control this later (NOTE)
        self.random_color_hue        = [RandomColorHue(x=0.1, p=0.8, N=N) for _ in range(2)]      # Control this later (NOTE)
        self.random_gray_scale    = [RandomGrayScale(p=0.2, N=N) for _ in range(2)]
        self.random_gaussian_blur = [RandomGaussianBlur(sigma=[.1, 2.], p=0.5, N=N) for _ in range(2)]

        self.eqv_list = ['random_crop', 'h_flip']
        self.inv_list = ['brightness', 'contrast', 'saturation', 'hue', 'gray', 'blur']

        self.transform_tensor = TensorTransform()

    def transform_eqv(self, indice, image):
        if 'random_crop' in self.eqv_list:
            image = self.random_resized_crop(indice, image)
        if 'h_flip' in self.eqv_list:
            image = self.random_horizontal_flip(indice, image)
        if 'v_flip' in self.eqv_list:
            image = self.random_vertical_flip(indice, image)

        return image
    
    def transform_inv(self, index, image, ver):
        """
        Hyperparameters same as MoCo v2. 
        (https://github.com/facebookresearch/moco/blob/master/main_moco.py)
        """
        if 'brightness' in self.inv_list:
            image = self.random_color_brightness[ver](index, image)
        if 'contrast' in self.inv_list:
            image = self.random_color_contrast[ver](index, image)
        if 'saturation' in self.inv_list:
            image = self.random_color_saturation[ver](index, image)
        if 'hue' in self.inv_list:
            image = self.random_color_hue[ver](index, image)
        if 'gray' in self.inv_list:
            image = self.random_gray_scale[ver](index, image)
        if 'blur' in self.inv_list:
            image = self.random_gaussian_blur[ver](index, image)
        
        return image
    
    def transform_image(self, index, image):
        image1 = self.transform_inv(index, image, 0)
        image1 = self.transform_tensor(image)

        image2 = self.transform_inv(index, image, 1)
        #image2 = TF.resize(image2, self.crop_size, Image.BILINEAR)
        image2 = self.transform_tensor(image2)
        return image1, image2
    
    def __getitem__(self, index):
        data_path = self.data_list[index]
        ori_img = Image.open(data_path)
        ori_img = self.transform(ori_img)

        image1, image2 = self.transform_image(index, ori_img)

        rets = []
        rets.append(image1)
        rets.append(image2)
        rets.append(index)
        
        return rets
    
    def __len__(self):
        return len(self.data_list)

if __name__ == '__main__':
    import torchvision.utils as vutils
    dataset = Dataset('/home/xtli/DATA/texture_data/',
                      sampled_num=3000)
    loader_ = torch.utils.data.DataLoader(dataset     = dataset,
                                         batch_size  = 1,
                                         shuffle     = True,
                                         num_workers = 1,
                                         drop_last   = True)
    loader = iter(loader_)
    img, points, pixs = loader.next()

    crop_size = 128
    canvas = torch.zeros((1, 3, crop_size, crop_size))
    for i in range(points.shape[-2]):
        p = (points[0, i] + 1) / 2.0 * (crop_size - 1)
        canvas[0, :, int(p[0]), int(p[1])] = pixs[0, :, i]
    vutils.save_image(canvas, 'canvas.png')
    vutils.save_image(img, 'img.png')