Spaces:
Sleeping
Sleeping
File size: 16,669 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# Natural Language Toolkit: Tokenizers
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
# Michael Heilman <mheilman@cmu.edu> (re-port from http://www.cis.upenn.edu/~treebank/tokenizer.sed)
# Tom Aarsen <> (modifications)
#
# URL: <https://www.nltk.org>
# For license information, see LICENSE.TXT
r"""
Penn Treebank Tokenizer
The Treebank tokenizer uses regular expressions to tokenize text as in Penn Treebank.
This implementation is a port of the tokenizer sed script written by Robert McIntyre
and available at http://www.cis.upenn.edu/~treebank/tokenizer.sed.
"""
import re
import warnings
from typing import Iterator, List, Tuple
from nltk.tokenize.api import TokenizerI
from nltk.tokenize.destructive import MacIntyreContractions
from nltk.tokenize.util import align_tokens
class TreebankWordTokenizer(TokenizerI):
r"""
The Treebank tokenizer uses regular expressions to tokenize text as in Penn Treebank.
This tokenizer performs the following steps:
- split standard contractions, e.g. ``don't`` -> ``do n't`` and ``they'll`` -> ``they 'll``
- treat most punctuation characters as separate tokens
- split off commas and single quotes, when followed by whitespace
- separate periods that appear at the end of line
>>> from nltk.tokenize import TreebankWordTokenizer
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\nThanks.'''
>>> TreebankWordTokenizer().tokenize(s)
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks', '.']
>>> s = "They'll save and invest more."
>>> TreebankWordTokenizer().tokenize(s)
['They', "'ll", 'save', 'and', 'invest', 'more', '.']
>>> s = "hi, my name can't hello,"
>>> TreebankWordTokenizer().tokenize(s)
['hi', ',', 'my', 'name', 'ca', "n't", 'hello', ',']
"""
# starting quotes
STARTING_QUOTES = [
(re.compile(r"^\""), r"``"),
(re.compile(r"(``)"), r" \1 "),
(re.compile(r"([ \(\[{<])(\"|\'{2})"), r"\1 `` "),
]
# punctuation
PUNCTUATION = [
(re.compile(r"([:,])([^\d])"), r" \1 \2"),
(re.compile(r"([:,])$"), r" \1 "),
(re.compile(r"\.\.\."), r" ... "),
(re.compile(r"[;@#$%&]"), r" \g<0> "),
(
re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'),
r"\1 \2\3 ",
), # Handles the final period.
(re.compile(r"[?!]"), r" \g<0> "),
(re.compile(r"([^'])' "), r"\1 ' "),
]
# Pads parentheses
PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ")
# Optionally: Convert parentheses, brackets and converts them to PTB symbols.
CONVERT_PARENTHESES = [
(re.compile(r"\("), "-LRB-"),
(re.compile(r"\)"), "-RRB-"),
(re.compile(r"\["), "-LSB-"),
(re.compile(r"\]"), "-RSB-"),
(re.compile(r"\{"), "-LCB-"),
(re.compile(r"\}"), "-RCB-"),
]
DOUBLE_DASHES = (re.compile(r"--"), r" -- ")
# ending quotes
ENDING_QUOTES = [
(re.compile(r"''"), " '' "),
(re.compile(r'"'), " '' "),
(re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "),
(re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "),
]
# List of contractions adapted from Robert MacIntyre's tokenizer.
_contractions = MacIntyreContractions()
CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2))
CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3))
def tokenize(
self, text: str, convert_parentheses: bool = False, return_str: bool = False
) -> List[str]:
r"""Return a tokenized copy of `text`.
>>> from nltk.tokenize import TreebankWordTokenizer
>>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York. Please buy me\ntwo of them.\nThanks.'''
>>> TreebankWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36',
'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
'of', 'them.', 'Thanks', '.']
>>> TreebankWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE
['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36',
'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two',
'of', 'them.', 'Thanks', '.']
:param text: A string with a sentence or sentences.
:type text: str
:param convert_parentheses: if True, replace parentheses to PTB symbols,
e.g. `(` to `-LRB-`. Defaults to False.
:type convert_parentheses: bool, optional
:param return_str: If True, return tokens as space-separated string,
defaults to False.
:type return_str: bool, optional
:return: List of tokens from `text`.
:rtype: List[str]
"""
if return_str is not False:
warnings.warn(
"Parameter 'return_str' has been deprecated and should no "
"longer be used.",
category=DeprecationWarning,
stacklevel=2,
)
for regexp, substitution in self.STARTING_QUOTES:
text = regexp.sub(substitution, text)
for regexp, substitution in self.PUNCTUATION:
text = regexp.sub(substitution, text)
# Handles parentheses.
regexp, substitution = self.PARENS_BRACKETS
text = regexp.sub(substitution, text)
# Optionally convert parentheses
if convert_parentheses:
for regexp, substitution in self.CONVERT_PARENTHESES:
text = regexp.sub(substitution, text)
# Handles double dash.
regexp, substitution = self.DOUBLE_DASHES
text = regexp.sub(substitution, text)
# add extra space to make things easier
text = " " + text + " "
for regexp, substitution in self.ENDING_QUOTES:
text = regexp.sub(substitution, text)
for regexp in self.CONTRACTIONS2:
text = regexp.sub(r" \1 \2 ", text)
for regexp in self.CONTRACTIONS3:
text = regexp.sub(r" \1 \2 ", text)
# We are not using CONTRACTIONS4 since
# they are also commented out in the SED scripts
# for regexp in self._contractions.CONTRACTIONS4:
# text = regexp.sub(r' \1 \2 \3 ', text)
return text.split()
def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]:
r"""
Returns the spans of the tokens in ``text``.
Uses the post-hoc nltk.tokens.align_tokens to return the offset spans.
>>> from nltk.tokenize import TreebankWordTokenizer
>>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).'''
>>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23),
... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38),
... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59),
... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)]
>>> list(TreebankWordTokenizer().span_tokenize(s)) == expected
True
>>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in',
... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')',
... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.']
>>> [s[start:end] for start, end in TreebankWordTokenizer().span_tokenize(s)] == expected
True
:param text: A string with a sentence or sentences.
:type text: str
:yield: Tuple[int, int]
"""
raw_tokens = self.tokenize(text)
# Convert converted quotes back to original double quotes
# Do this only if original text contains double quote(s) or double
# single-quotes (because '' might be transformed to `` if it is
# treated as starting quotes).
if ('"' in text) or ("''" in text):
# Find double quotes and converted quotes
matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)]
# Replace converted quotes back to double quotes
tokens = [
matched.pop(0) if tok in ['"', "``", "''"] else tok
for tok in raw_tokens
]
else:
tokens = raw_tokens
yield from align_tokens(tokens, text)
class TreebankWordDetokenizer(TokenizerI):
r"""
The Treebank detokenizer uses the reverse regex operations corresponding to
the Treebank tokenizer's regexes.
Note:
- There're additional assumption mades when undoing the padding of ``[;@#$%&]``
punctuation symbols that isn't presupposed in the TreebankTokenizer.
- There're additional regexes added in reversing the parentheses tokenization,
such as the ``r'([\]\)\}\>])\s([:;,.])'``, which removes the additional right
padding added to the closing parentheses precedding ``[:;,.]``.
- It's not possible to return the original whitespaces as they were because
there wasn't explicit records of where `'\n'`, `'\t'` or `'\s'` were removed at
the text.split() operation.
>>> from nltk.tokenize.treebank import TreebankWordTokenizer, TreebankWordDetokenizer
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\nThanks.'''
>>> d = TreebankWordDetokenizer()
>>> t = TreebankWordTokenizer()
>>> toks = t.tokenize(s)
>>> d.detokenize(toks)
'Good muffins cost $3.88 in New York. Please buy me two of them. Thanks.'
The MXPOST parentheses substitution can be undone using the ``convert_parentheses``
parameter:
>>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).'''
>>> expected_tokens = ['Good', 'muffins', 'cost', '$', '3.88', 'in',
... 'New', '-LRB-', 'York', '-RRB-', '.', 'Please', '-LRB-', 'buy',
... '-RRB-', 'me', 'two', 'of', 'them.', '-LRB-', 'Thanks', '-RRB-', '.']
>>> expected_tokens == t.tokenize(s, convert_parentheses=True)
True
>>> expected_detoken = 'Good muffins cost $3.88 in New (York). Please (buy) me two of them. (Thanks).'
>>> expected_detoken == d.detokenize(t.tokenize(s, convert_parentheses=True), convert_parentheses=True)
True
During tokenization it's safe to add more spaces but during detokenization,
simply undoing the padding doesn't really help.
- During tokenization, left and right pad is added to ``[!?]``, when
detokenizing, only left shift the ``[!?]`` is needed.
Thus ``(re.compile(r'\s([?!])'), r'\g<1>')``.
- During tokenization ``[:,]`` are left and right padded but when detokenizing,
only left shift is necessary and we keep right pad after comma/colon
if the string after is a non-digit.
Thus ``(re.compile(r'\s([:,])\s([^\d])'), r'\1 \2')``.
>>> from nltk.tokenize.treebank import TreebankWordDetokenizer
>>> toks = ['hello', ',', 'i', 'ca', "n't", 'feel', 'my', 'feet', '!', 'Help', '!', '!']
>>> twd = TreebankWordDetokenizer()
>>> twd.detokenize(toks)
"hello, i can't feel my feet! Help!!"
>>> toks = ['hello', ',', 'i', "can't", 'feel', ';', 'my', 'feet', '!',
... 'Help', '!', '!', 'He', 'said', ':', 'Help', ',', 'help', '?', '!']
>>> twd.detokenize(toks)
"hello, i can't feel; my feet! Help!! He said: Help, help?!"
"""
_contractions = MacIntyreContractions()
CONTRACTIONS2 = [
re.compile(pattern.replace("(?#X)", r"\s"))
for pattern in _contractions.CONTRACTIONS2
]
CONTRACTIONS3 = [
re.compile(pattern.replace("(?#X)", r"\s"))
for pattern in _contractions.CONTRACTIONS3
]
# ending quotes
ENDING_QUOTES = [
(re.compile(r"([^' ])\s('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1\2 "),
(re.compile(r"([^' ])\s('[sS]|'[mM]|'[dD]|') "), r"\1\2 "),
(re.compile(r"(\S)\s(\'\')"), r"\1\2"),
(
re.compile(r"(\'\')\s([.,:)\]>};%])"),
r"\1\2",
), # Quotes followed by no-left-padded punctuations.
(re.compile(r"''"), '"'),
]
# Handles double dashes
DOUBLE_DASHES = (re.compile(r" -- "), r"--")
# Optionally: Convert parentheses, brackets and converts them from PTB symbols.
CONVERT_PARENTHESES = [
(re.compile("-LRB-"), "("),
(re.compile("-RRB-"), ")"),
(re.compile("-LSB-"), "["),
(re.compile("-RSB-"), "]"),
(re.compile("-LCB-"), "{"),
(re.compile("-RCB-"), "}"),
]
# Undo padding on parentheses.
PARENS_BRACKETS = [
(re.compile(r"([\[\(\{\<])\s"), r"\g<1>"),
(re.compile(r"\s([\]\)\}\>])"), r"\g<1>"),
(re.compile(r"([\]\)\}\>])\s([:;,.])"), r"\1\2"),
]
# punctuation
PUNCTUATION = [
(re.compile(r"([^'])\s'\s"), r"\1' "),
(re.compile(r"\s([?!])"), r"\g<1>"), # Strip left pad for [?!]
# (re.compile(r'\s([?!])\s'), r'\g<1>'),
(re.compile(r'([^\.])\s(\.)([\]\)}>"\']*)\s*$'), r"\1\2\3"),
# When tokenizing, [;@#$%&] are padded with whitespace regardless of
# whether there are spaces before or after them.
# But during detokenization, we need to distinguish between left/right
# pad, so we split this up.
(re.compile(r"([#$])\s"), r"\g<1>"), # Left pad.
(re.compile(r"\s([;%])"), r"\g<1>"), # Right pad.
# (re.compile(r"\s([&*])\s"), r" \g<1> "), # Unknown pad.
(re.compile(r"\s\.\.\.\s"), r"..."),
# (re.compile(r"\s([:,])\s$"), r"\1"), # .strip() takes care of it.
(
re.compile(r"\s([:,])"),
r"\1",
), # Just remove left padding. Punctuation in numbers won't be padded.
]
# starting quotes
STARTING_QUOTES = [
(re.compile(r"([ (\[{<])\s``"), r"\1``"),
(re.compile(r"(``)\s"), r"\1"),
(re.compile(r"``"), r'"'),
]
def tokenize(self, tokens: List[str], convert_parentheses: bool = False) -> str:
"""
Treebank detokenizer, created by undoing the regexes from
the TreebankWordTokenizer.tokenize.
:param tokens: A list of strings, i.e. tokenized text.
:type tokens: List[str]
:param convert_parentheses: if True, replace PTB symbols with parentheses,
e.g. `-LRB-` to `(`. Defaults to False.
:type convert_parentheses: bool, optional
:return: str
"""
text = " ".join(tokens)
# Add extra space to make things easier
text = " " + text + " "
# Reverse the contractions regexes.
# Note: CONTRACTIONS4 are not used in tokenization.
for regexp in self.CONTRACTIONS3:
text = regexp.sub(r"\1\2", text)
for regexp in self.CONTRACTIONS2:
text = regexp.sub(r"\1\2", text)
# Reverse the regexes applied for ending quotes.
for regexp, substitution in self.ENDING_QUOTES:
text = regexp.sub(substitution, text)
# Undo the space padding.
text = text.strip()
# Reverse the padding on double dashes.
regexp, substitution = self.DOUBLE_DASHES
text = regexp.sub(substitution, text)
if convert_parentheses:
for regexp, substitution in self.CONVERT_PARENTHESES:
text = regexp.sub(substitution, text)
# Reverse the padding regexes applied for parenthesis/brackets.
for regexp, substitution in self.PARENS_BRACKETS:
text = regexp.sub(substitution, text)
# Reverse the regexes applied for punctuations.
for regexp, substitution in self.PUNCTUATION:
text = regexp.sub(substitution, text)
# Reverse the regexes applied for starting quotes.
for regexp, substitution in self.STARTING_QUOTES:
text = regexp.sub(substitution, text)
return text.strip()
def detokenize(self, tokens: List[str], convert_parentheses: bool = False) -> str:
"""Duck-typing the abstract *tokenize()*."""
return self.tokenize(tokens, convert_parentheses)
|