File size: 70,239 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
# Natural Language Toolkit: Logic
#
# Author: Dan Garrette <dhgarrette@gmail.com>
#
# Copyright (C) 2001-2023 NLTK Project
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

A version of first order predicate logic, built on

top of the typed lambda calculus.

"""

import operator
import re
from collections import defaultdict
from functools import reduce, total_ordering

from nltk.internals import Counter
from nltk.util import Trie

APP = "APP"

_counter = Counter()


class Tokens:
    LAMBDA = "\\"
    LAMBDA_LIST = ["\\"]

    # Quantifiers
    EXISTS = "exists"
    EXISTS_LIST = ["some", "exists", "exist"]
    ALL = "all"
    ALL_LIST = ["all", "forall"]
    IOTA = "iota"
    IOTA_LIST = ["iota"]

    # Punctuation
    DOT = "."
    OPEN = "("
    CLOSE = ")"
    COMMA = ","

    # Operations
    NOT = "-"
    NOT_LIST = ["not", "-", "!"]
    AND = "&"
    AND_LIST = ["and", "&", "^"]
    OR = "|"
    OR_LIST = ["or", "|"]
    IMP = "->"
    IMP_LIST = ["implies", "->", "=>"]
    IFF = "<->"
    IFF_LIST = ["iff", "<->", "<=>"]
    EQ = "="
    EQ_LIST = ["=", "=="]
    NEQ = "!="
    NEQ_LIST = ["!="]

    # Collections of tokens
    BINOPS = AND_LIST + OR_LIST + IMP_LIST + IFF_LIST
    QUANTS = EXISTS_LIST + ALL_LIST + IOTA_LIST
    PUNCT = [DOT, OPEN, CLOSE, COMMA]

    TOKENS = BINOPS + EQ_LIST + NEQ_LIST + QUANTS + LAMBDA_LIST + PUNCT + NOT_LIST

    # Special
    SYMBOLS = [x for x in TOKENS if re.match(r"^[-\\.(),!&^|>=<]*$", x)]


def boolean_ops():
    """

    Boolean operators

    """
    names = ["negation", "conjunction", "disjunction", "implication", "equivalence"]
    for pair in zip(names, [Tokens.NOT, Tokens.AND, Tokens.OR, Tokens.IMP, Tokens.IFF]):
        print("%-15s\t%s" % pair)


def equality_preds():
    """

    Equality predicates

    """
    names = ["equality", "inequality"]
    for pair in zip(names, [Tokens.EQ, Tokens.NEQ]):
        print("%-15s\t%s" % pair)


def binding_ops():
    """

    Binding operators

    """
    names = ["existential", "universal", "lambda"]
    for pair in zip(names, [Tokens.EXISTS, Tokens.ALL, Tokens.LAMBDA, Tokens.IOTA]):
        print("%-15s\t%s" % pair)


class LogicParser:
    """A lambda calculus expression parser."""

    def __init__(self, type_check=False):
        """

        :param type_check: should type checking be performed

            to their types?

        :type type_check: bool

        """
        assert isinstance(type_check, bool)

        self._currentIndex = 0
        self._buffer = []
        self.type_check = type_check

        """A list of tuples of quote characters.  The 4-tuple is comprised

        of the start character, the end character, the escape character, and

        a boolean indicating whether the quotes should be included in the

        result. Quotes are used to signify that a token should be treated as

        atomic, ignoring any special characters within the token.  The escape

        character allows the quote end character to be used within the quote.

        If True, the boolean indicates that the final token should contain the

        quote and escape characters.

        This method exists to be overridden"""
        self.quote_chars = []

        self.operator_precedence = dict(
            [(x, 1) for x in Tokens.LAMBDA_LIST]
            + [(x, 2) for x in Tokens.NOT_LIST]
            + [(APP, 3)]
            + [(x, 4) for x in Tokens.EQ_LIST + Tokens.NEQ_LIST]
            + [(x, 5) for x in Tokens.QUANTS]
            + [(x, 6) for x in Tokens.AND_LIST]
            + [(x, 7) for x in Tokens.OR_LIST]
            + [(x, 8) for x in Tokens.IMP_LIST]
            + [(x, 9) for x in Tokens.IFF_LIST]
            + [(None, 10)]
        )
        self.right_associated_operations = [APP]

    def parse(self, data, signature=None):
        """

        Parse the expression.



        :param data: str for the input to be parsed

        :param signature: ``dict<str, str>`` that maps variable names to type

            strings

        :returns: a parsed Expression

        """
        data = data.rstrip()

        self._currentIndex = 0
        self._buffer, mapping = self.process(data)

        try:
            result = self.process_next_expression(None)
            if self.inRange(0):
                raise UnexpectedTokenException(self._currentIndex + 1, self.token(0))
        except LogicalExpressionException as e:
            msg = "{}\n{}\n{}^".format(e, data, " " * mapping[e.index - 1])
            raise LogicalExpressionException(None, msg) from e

        if self.type_check:
            result.typecheck(signature)

        return result

    def process(self, data):
        """Split the data into tokens"""
        out = []
        mapping = {}
        tokenTrie = Trie(self.get_all_symbols())
        token = ""
        data_idx = 0
        token_start_idx = data_idx
        while data_idx < len(data):
            cur_data_idx = data_idx
            quoted_token, data_idx = self.process_quoted_token(data_idx, data)
            if quoted_token:
                if not token:
                    token_start_idx = cur_data_idx
                token += quoted_token
                continue

            st = tokenTrie
            c = data[data_idx]
            symbol = ""
            while c in st:
                symbol += c
                st = st[c]
                if len(data) - data_idx > len(symbol):
                    c = data[data_idx + len(symbol)]
                else:
                    break
            if Trie.LEAF in st:
                # token is a complete symbol
                if token:
                    mapping[len(out)] = token_start_idx
                    out.append(token)
                    token = ""
                mapping[len(out)] = data_idx
                out.append(symbol)
                data_idx += len(symbol)
            else:
                if data[data_idx] in " \t\n":  # any whitespace
                    if token:
                        mapping[len(out)] = token_start_idx
                        out.append(token)
                        token = ""
                else:
                    if not token:
                        token_start_idx = data_idx
                    token += data[data_idx]
                data_idx += 1
        if token:
            mapping[len(out)] = token_start_idx
            out.append(token)
        mapping[len(out)] = len(data)
        mapping[len(out) + 1] = len(data) + 1
        return out, mapping

    def process_quoted_token(self, data_idx, data):
        token = ""
        c = data[data_idx]
        i = data_idx
        for start, end, escape, incl_quotes in self.quote_chars:
            if c == start:
                if incl_quotes:
                    token += c
                i += 1
                while data[i] != end:
                    if data[i] == escape:
                        if incl_quotes:
                            token += data[i]
                        i += 1
                        if len(data) == i:  # if there are no more chars
                            raise LogicalExpressionException(
                                None,
                                "End of input reached.  "
                                "Escape character [%s] found at end." % escape,
                            )
                        token += data[i]
                    else:
                        token += data[i]
                    i += 1
                    if len(data) == i:
                        raise LogicalExpressionException(
                            None, "End of input reached.  " "Expected: [%s]" % end
                        )
                if incl_quotes:
                    token += data[i]
                i += 1
                if not token:
                    raise LogicalExpressionException(None, "Empty quoted token found")
                break
        return token, i

    def get_all_symbols(self):
        """This method exists to be overridden"""
        return Tokens.SYMBOLS

    def inRange(self, location):
        """Return TRUE if the given location is within the buffer"""
        return self._currentIndex + location < len(self._buffer)

    def token(self, location=None):
        """Get the next waiting token.  If a location is given, then

        return the token at currentIndex+location without advancing

        currentIndex; setting it gives lookahead/lookback capability."""
        try:
            if location is None:
                tok = self._buffer[self._currentIndex]
                self._currentIndex += 1
            else:
                tok = self._buffer[self._currentIndex + location]
            return tok
        except IndexError as e:
            raise ExpectedMoreTokensException(self._currentIndex + 1) from e

    def isvariable(self, tok):
        return tok not in Tokens.TOKENS

    def process_next_expression(self, context):
        """Parse the next complete expression from the stream and return it."""
        try:
            tok = self.token()
        except ExpectedMoreTokensException as e:
            raise ExpectedMoreTokensException(
                self._currentIndex + 1, message="Expression expected."
            ) from e

        accum = self.handle(tok, context)

        if not accum:
            raise UnexpectedTokenException(
                self._currentIndex, tok, message="Expression expected."
            )

        return self.attempt_adjuncts(accum, context)

    def handle(self, tok, context):
        """This method is intended to be overridden for logics that

        use different operators or expressions"""
        if self.isvariable(tok):
            return self.handle_variable(tok, context)

        elif tok in Tokens.NOT_LIST:
            return self.handle_negation(tok, context)

        elif tok in Tokens.LAMBDA_LIST:
            return self.handle_lambda(tok, context)

        elif tok in Tokens.QUANTS:
            return self.handle_quant(tok, context)

        elif tok == Tokens.OPEN:
            return self.handle_open(tok, context)

    def attempt_adjuncts(self, expression, context):
        cur_idx = None
        while cur_idx != self._currentIndex:  # while adjuncts are added
            cur_idx = self._currentIndex
            expression = self.attempt_EqualityExpression(expression, context)
            expression = self.attempt_ApplicationExpression(expression, context)
            expression = self.attempt_BooleanExpression(expression, context)
        return expression

    def handle_negation(self, tok, context):
        return self.make_NegatedExpression(self.process_next_expression(Tokens.NOT))

    def make_NegatedExpression(self, expression):
        return NegatedExpression(expression)

    def handle_variable(self, tok, context):
        # It's either: 1) a predicate expression: sees(x,y)
        #             2) an application expression: P(x)
        #             3) a solo variable: john OR x
        accum = self.make_VariableExpression(tok)
        if self.inRange(0) and self.token(0) == Tokens.OPEN:
            # The predicate has arguments
            if not isinstance(accum, FunctionVariableExpression) and not isinstance(
                accum, ConstantExpression
            ):
                raise LogicalExpressionException(
                    self._currentIndex,
                    "'%s' is an illegal predicate name.  "
                    "Individual variables may not be used as "
                    "predicates." % tok,
                )
            self.token()  # swallow the Open Paren

            # curry the arguments
            accum = self.make_ApplicationExpression(
                accum, self.process_next_expression(APP)
            )
            while self.inRange(0) and self.token(0) == Tokens.COMMA:
                self.token()  # swallow the comma
                accum = self.make_ApplicationExpression(
                    accum, self.process_next_expression(APP)
                )
            self.assertNextToken(Tokens.CLOSE)
        return accum

    def get_next_token_variable(self, description):
        try:
            tok = self.token()
        except ExpectedMoreTokensException as e:
            raise ExpectedMoreTokensException(e.index, "Variable expected.") from e
        if isinstance(self.make_VariableExpression(tok), ConstantExpression):
            raise LogicalExpressionException(
                self._currentIndex,
                "'%s' is an illegal variable name.  "
                "Constants may not be %s." % (tok, description),
            )
        return Variable(tok)

    def handle_lambda(self, tok, context):
        # Expression is a lambda expression
        if not self.inRange(0):
            raise ExpectedMoreTokensException(
                self._currentIndex + 2,
                message="Variable and Expression expected following lambda operator.",
            )
        vars = [self.get_next_token_variable("abstracted")]
        while True:
            if not self.inRange(0) or (
                self.token(0) == Tokens.DOT and not self.inRange(1)
            ):
                raise ExpectedMoreTokensException(
                    self._currentIndex + 2, message="Expression expected."
                )
            if not self.isvariable(self.token(0)):
                break
            # Support expressions like: \x y.M == \x.\y.M
            vars.append(self.get_next_token_variable("abstracted"))
        if self.inRange(0) and self.token(0) == Tokens.DOT:
            self.token()  # swallow the dot

        accum = self.process_next_expression(tok)
        while vars:
            accum = self.make_LambdaExpression(vars.pop(), accum)
        return accum

    def handle_quant(self, tok, context):
        # Expression is a quantified expression: some x.M
        factory = self.get_QuantifiedExpression_factory(tok)

        if not self.inRange(0):
            raise ExpectedMoreTokensException(
                self._currentIndex + 2,
                message="Variable and Expression expected following quantifier '%s'."
                % tok,
            )
        vars = [self.get_next_token_variable("quantified")]
        while True:
            if not self.inRange(0) or (
                self.token(0) == Tokens.DOT and not self.inRange(1)
            ):
                raise ExpectedMoreTokensException(
                    self._currentIndex + 2, message="Expression expected."
                )
            if not self.isvariable(self.token(0)):
                break
            # Support expressions like: some x y.M == some x.some y.M
            vars.append(self.get_next_token_variable("quantified"))
        if self.inRange(0) and self.token(0) == Tokens.DOT:
            self.token()  # swallow the dot

        accum = self.process_next_expression(tok)
        while vars:
            accum = self.make_QuanifiedExpression(factory, vars.pop(), accum)
        return accum

    def get_QuantifiedExpression_factory(self, tok):
        """This method serves as a hook for other logic parsers that

        have different quantifiers"""
        if tok in Tokens.EXISTS_LIST:
            return ExistsExpression
        elif tok in Tokens.ALL_LIST:
            return AllExpression
        elif tok in Tokens.IOTA_LIST:
            return IotaExpression
        else:
            self.assertToken(tok, Tokens.QUANTS)

    def make_QuanifiedExpression(self, factory, variable, term):
        return factory(variable, term)

    def handle_open(self, tok, context):
        # Expression is in parens
        accum = self.process_next_expression(None)
        self.assertNextToken(Tokens.CLOSE)
        return accum

    def attempt_EqualityExpression(self, expression, context):
        """Attempt to make an equality expression.  If the next token is an

        equality operator, then an EqualityExpression will be returned.

        Otherwise, the parameter will be returned."""
        if self.inRange(0):
            tok = self.token(0)
            if tok in Tokens.EQ_LIST + Tokens.NEQ_LIST and self.has_priority(
                tok, context
            ):
                self.token()  # swallow the "=" or "!="
                expression = self.make_EqualityExpression(
                    expression, self.process_next_expression(tok)
                )
                if tok in Tokens.NEQ_LIST:
                    expression = self.make_NegatedExpression(expression)
        return expression

    def make_EqualityExpression(self, first, second):
        """This method serves as a hook for other logic parsers that

        have different equality expression classes"""
        return EqualityExpression(first, second)

    def attempt_BooleanExpression(self, expression, context):
        """Attempt to make a boolean expression.  If the next token is a boolean

        operator, then a BooleanExpression will be returned.  Otherwise, the

        parameter will be returned."""
        while self.inRange(0):
            tok = self.token(0)
            factory = self.get_BooleanExpression_factory(tok)
            if factory and self.has_priority(tok, context):
                self.token()  # swallow the operator
                expression = self.make_BooleanExpression(
                    factory, expression, self.process_next_expression(tok)
                )
            else:
                break
        return expression

    def get_BooleanExpression_factory(self, tok):
        """This method serves as a hook for other logic parsers that

        have different boolean operators"""
        if tok in Tokens.AND_LIST:
            return AndExpression
        elif tok in Tokens.OR_LIST:
            return OrExpression
        elif tok in Tokens.IMP_LIST:
            return ImpExpression
        elif tok in Tokens.IFF_LIST:
            return IffExpression
        else:
            return None

    def make_BooleanExpression(self, factory, first, second):
        return factory(first, second)

    def attempt_ApplicationExpression(self, expression, context):
        """Attempt to make an application expression.  The next tokens are

        a list of arguments in parens, then the argument expression is a

        function being applied to the arguments.  Otherwise, return the

        argument expression."""
        if self.has_priority(APP, context):
            if self.inRange(0) and self.token(0) == Tokens.OPEN:
                if (
                    not isinstance(expression, LambdaExpression)
                    and not isinstance(expression, ApplicationExpression)
                    and not isinstance(expression, FunctionVariableExpression)
                    and not isinstance(expression, ConstantExpression)
                ):
                    raise LogicalExpressionException(
                        self._currentIndex,
                        ("The function '%s" % expression)
                        + "' is not a Lambda Expression, an "
                        "Application Expression, or a "
                        "functional predicate, so it may "
                        "not take arguments.",
                    )
                self.token()  # swallow then open paren
                # curry the arguments
                accum = self.make_ApplicationExpression(
                    expression, self.process_next_expression(APP)
                )
                while self.inRange(0) and self.token(0) == Tokens.COMMA:
                    self.token()  # swallow the comma
                    accum = self.make_ApplicationExpression(
                        accum, self.process_next_expression(APP)
                    )
                self.assertNextToken(Tokens.CLOSE)
                return accum
        return expression

    def make_ApplicationExpression(self, function, argument):
        return ApplicationExpression(function, argument)

    def make_VariableExpression(self, name):
        return VariableExpression(Variable(name))

    def make_LambdaExpression(self, variable, term):
        return LambdaExpression(variable, term)

    def has_priority(self, operation, context):
        return self.operator_precedence[operation] < self.operator_precedence[
            context
        ] or (
            operation in self.right_associated_operations
            and self.operator_precedence[operation] == self.operator_precedence[context]
        )

    def assertNextToken(self, expected):
        try:
            tok = self.token()
        except ExpectedMoreTokensException as e:
            raise ExpectedMoreTokensException(
                e.index, message="Expected token '%s'." % expected
            ) from e

        if isinstance(expected, list):
            if tok not in expected:
                raise UnexpectedTokenException(self._currentIndex, tok, expected)
        else:
            if tok != expected:
                raise UnexpectedTokenException(self._currentIndex, tok, expected)

    def assertToken(self, tok, expected):
        if isinstance(expected, list):
            if tok not in expected:
                raise UnexpectedTokenException(self._currentIndex, tok, expected)
        else:
            if tok != expected:
                raise UnexpectedTokenException(self._currentIndex, tok, expected)

    def __repr__(self):
        if self.inRange(0):
            msg = "Next token: " + self.token(0)
        else:
            msg = "No more tokens"
        return "<" + self.__class__.__name__ + ": " + msg + ">"


def read_logic(s, logic_parser=None, encoding=None):
    """

    Convert a file of First Order Formulas into a list of {Expression}s.



    :param s: the contents of the file

    :type s: str

    :param logic_parser: The parser to be used to parse the logical expression

    :type logic_parser: LogicParser

    :param encoding: the encoding of the input string, if it is binary

    :type encoding: str

    :return: a list of parsed formulas.

    :rtype: list(Expression)

    """
    if encoding is not None:
        s = s.decode(encoding)
    if logic_parser is None:
        logic_parser = LogicParser()

    statements = []
    for linenum, line in enumerate(s.splitlines()):
        line = line.strip()
        if line.startswith("#") or line == "":
            continue
        try:
            statements.append(logic_parser.parse(line))
        except LogicalExpressionException as e:
            raise ValueError(f"Unable to parse line {linenum}: {line}") from e
    return statements


@total_ordering
class Variable:
    def __init__(self, name):
        """

        :param name: the name of the variable

        """
        assert isinstance(name, str), "%s is not a string" % name
        self.name = name

    def __eq__(self, other):
        return isinstance(other, Variable) and self.name == other.name

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, Variable):
            raise TypeError
        return self.name < other.name

    def substitute_bindings(self, bindings):
        return bindings.get(self, self)

    def __hash__(self):
        return hash(self.name)

    def __str__(self):
        return self.name

    def __repr__(self):
        return "Variable('%s')" % self.name


def unique_variable(pattern=None, ignore=None):
    """

    Return a new, unique variable.



    :param pattern: ``Variable`` that is being replaced.  The new variable must

        be the same type.

    :param term: a set of ``Variable`` objects that should not be returned from

        this function.

    :rtype: Variable

    """
    if pattern is not None:
        if is_indvar(pattern.name):
            prefix = "z"
        elif is_funcvar(pattern.name):
            prefix = "F"
        elif is_eventvar(pattern.name):
            prefix = "e0"
        else:
            assert False, "Cannot generate a unique constant"
    else:
        prefix = "z"

    v = Variable(f"{prefix}{_counter.get()}")
    while ignore is not None and v in ignore:
        v = Variable(f"{prefix}{_counter.get()}")
    return v


def skolem_function(univ_scope=None):
    """

    Return a skolem function over the variables in univ_scope

    param univ_scope

    """
    skolem = VariableExpression(Variable("F%s" % _counter.get()))
    if univ_scope:
        for v in list(univ_scope):
            skolem = skolem(VariableExpression(v))
    return skolem


class Type:
    def __repr__(self):
        return "%s" % self

    def __hash__(self):
        return hash("%s" % self)

    @classmethod
    def fromstring(cls, s):
        return read_type(s)


class ComplexType(Type):
    def __init__(self, first, second):
        assert isinstance(first, Type), "%s is not a Type" % first
        assert isinstance(second, Type), "%s is not a Type" % second
        self.first = first
        self.second = second

    def __eq__(self, other):
        return (
            isinstance(other, ComplexType)
            and self.first == other.first
            and self.second == other.second
        )

    def __ne__(self, other):
        return not self == other

    __hash__ = Type.__hash__

    def matches(self, other):
        if isinstance(other, ComplexType):
            return self.first.matches(other.first) and self.second.matches(other.second)
        else:
            return self == ANY_TYPE

    def resolve(self, other):
        if other == ANY_TYPE:
            return self
        elif isinstance(other, ComplexType):
            f = self.first.resolve(other.first)
            s = self.second.resolve(other.second)
            if f and s:
                return ComplexType(f, s)
            else:
                return None
        elif self == ANY_TYPE:
            return other
        else:
            return None

    def __str__(self):
        if self == ANY_TYPE:
            return "%s" % ANY_TYPE
        else:
            return f"<{self.first},{self.second}>"

    def str(self):
        if self == ANY_TYPE:
            return ANY_TYPE.str()
        else:
            return f"({self.first.str()} -> {self.second.str()})"


class BasicType(Type):
    def __eq__(self, other):
        return isinstance(other, BasicType) and ("%s" % self) == ("%s" % other)

    def __ne__(self, other):
        return not self == other

    __hash__ = Type.__hash__

    def matches(self, other):
        return other == ANY_TYPE or self == other

    def resolve(self, other):
        if self.matches(other):
            return self
        else:
            return None


class EntityType(BasicType):
    def __str__(self):
        return "e"

    def str(self):
        return "IND"


class TruthValueType(BasicType):
    def __str__(self):
        return "t"

    def str(self):
        return "BOOL"


class EventType(BasicType):
    def __str__(self):
        return "v"

    def str(self):
        return "EVENT"


class AnyType(BasicType, ComplexType):
    def __init__(self):
        pass

    @property
    def first(self):
        return self

    @property
    def second(self):
        return self

    def __eq__(self, other):
        return isinstance(other, AnyType) or other.__eq__(self)

    def __ne__(self, other):
        return not self == other

    __hash__ = Type.__hash__

    def matches(self, other):
        return True

    def resolve(self, other):
        return other

    def __str__(self):
        return "?"

    def str(self):
        return "ANY"


TRUTH_TYPE = TruthValueType()
ENTITY_TYPE = EntityType()
EVENT_TYPE = EventType()
ANY_TYPE = AnyType()


def read_type(type_string):
    assert isinstance(type_string, str)
    type_string = type_string.replace(" ", "")  # remove spaces

    if type_string[0] == "<":
        assert type_string[-1] == ">"
        paren_count = 0
        for i, char in enumerate(type_string):
            if char == "<":
                paren_count += 1
            elif char == ">":
                paren_count -= 1
                assert paren_count > 0
            elif char == ",":
                if paren_count == 1:
                    break
        return ComplexType(
            read_type(type_string[1:i]), read_type(type_string[i + 1 : -1])
        )
    elif type_string[0] == "%s" % ENTITY_TYPE:
        return ENTITY_TYPE
    elif type_string[0] == "%s" % TRUTH_TYPE:
        return TRUTH_TYPE
    elif type_string[0] == "%s" % ANY_TYPE:
        return ANY_TYPE
    else:
        raise LogicalExpressionException(
            None, "Unexpected character: '%s'." % type_string[0]
        )


class TypeException(Exception):
    def __init__(self, msg):
        super().__init__(msg)


class InconsistentTypeHierarchyException(TypeException):
    def __init__(self, variable, expression=None):
        if expression:
            msg = (
                "The variable '%s' was found in multiple places with different"
                " types in '%s'." % (variable, expression)
            )
        else:
            msg = (
                "The variable '%s' was found in multiple places with different"
                " types." % (variable)
            )
        super().__init__(msg)


class TypeResolutionException(TypeException):
    def __init__(self, expression, other_type):
        super().__init__(
            "The type of '%s', '%s', cannot be resolved with type '%s'"
            % (expression, expression.type, other_type)
        )


class IllegalTypeException(TypeException):
    def __init__(self, expression, other_type, allowed_type):
        super().__init__(
            "Cannot set type of %s '%s' to '%s'; must match type '%s'."
            % (expression.__class__.__name__, expression, other_type, allowed_type)
        )


def typecheck(expressions, signature=None):
    """

    Ensure correct typing across a collection of ``Expression`` objects.

    :param expressions: a collection of expressions

    :param signature: dict that maps variable names to types (or string

    representations of types)

    """
    # typecheck and create master signature
    for expression in expressions:
        signature = expression.typecheck(signature)
    # apply master signature to all expressions
    for expression in expressions[:-1]:
        expression.typecheck(signature)
    return signature


class SubstituteBindingsI:
    """

    An interface for classes that can perform substitutions for

    variables.

    """

    def substitute_bindings(self, bindings):
        """

        :return: The object that is obtained by replacing

            each variable bound by ``bindings`` with its values.

            Aliases are already resolved. (maybe?)

        :rtype: (any)

        """
        raise NotImplementedError()

    def variables(self):
        """

        :return: A list of all variables in this object.

        """
        raise NotImplementedError()


class Expression(SubstituteBindingsI):
    """This is the base abstract object for all logical expressions"""

    _logic_parser = LogicParser()
    _type_checking_logic_parser = LogicParser(type_check=True)

    @classmethod
    def fromstring(cls, s, type_check=False, signature=None):
        if type_check:
            return cls._type_checking_logic_parser.parse(s, signature)
        else:
            return cls._logic_parser.parse(s, signature)

    def __call__(self, other, *additional):
        accum = self.applyto(other)
        for a in additional:
            accum = accum(a)
        return accum

    def applyto(self, other):
        assert isinstance(other, Expression), "%s is not an Expression" % other
        return ApplicationExpression(self, other)

    def __neg__(self):
        return NegatedExpression(self)

    def negate(self):
        """If this is a negated expression, remove the negation.

        Otherwise add a negation."""
        return -self

    def __and__(self, other):
        if not isinstance(other, Expression):
            raise TypeError("%s is not an Expression" % other)
        return AndExpression(self, other)

    def __or__(self, other):
        if not isinstance(other, Expression):
            raise TypeError("%s is not an Expression" % other)
        return OrExpression(self, other)

    def __gt__(self, other):
        if not isinstance(other, Expression):
            raise TypeError("%s is not an Expression" % other)
        return ImpExpression(self, other)

    def __lt__(self, other):
        if not isinstance(other, Expression):
            raise TypeError("%s is not an Expression" % other)
        return IffExpression(self, other)

    def __eq__(self, other):
        return NotImplemented

    def __ne__(self, other):
        return not self == other

    def equiv(self, other, prover=None):
        """

        Check for logical equivalence.

        Pass the expression (self <-> other) to the theorem prover.

        If the prover says it is valid, then the self and other are equal.



        :param other: an ``Expression`` to check equality against

        :param prover: a ``nltk.inference.api.Prover``

        """
        assert isinstance(other, Expression), "%s is not an Expression" % other

        if prover is None:
            from nltk.inference import Prover9

            prover = Prover9()
        bicond = IffExpression(self.simplify(), other.simplify())
        return prover.prove(bicond)

    def __hash__(self):
        return hash(repr(self))

    def substitute_bindings(self, bindings):
        expr = self
        for var in expr.variables():
            if var in bindings:
                val = bindings[var]
                if isinstance(val, Variable):
                    val = self.make_VariableExpression(val)
                elif not isinstance(val, Expression):
                    raise ValueError(
                        "Can not substitute a non-expression "
                        "value into an expression: %r" % (val,)
                    )
                # Substitute bindings in the target value.
                val = val.substitute_bindings(bindings)
                # Replace var w/ the target value.
                expr = expr.replace(var, val)
        return expr.simplify()

    def typecheck(self, signature=None):
        """

        Infer and check types.  Raise exceptions if necessary.



        :param signature: dict that maps variable names to types (or string

            representations of types)

        :return: the signature, plus any additional type mappings

        """
        sig = defaultdict(list)
        if signature:
            for key in signature:
                val = signature[key]
                varEx = VariableExpression(Variable(key))
                if isinstance(val, Type):
                    varEx.type = val
                else:
                    varEx.type = read_type(val)
                sig[key].append(varEx)

        self._set_type(signature=sig)

        return {key: sig[key][0].type for key in sig}

    def findtype(self, variable):
        """

        Find the type of the given variable as it is used in this expression.

        For example, finding the type of "P" in "P(x) & Q(x,y)" yields "<e,t>"



        :param variable: Variable

        """
        raise NotImplementedError()

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """

        Set the type of this expression to be the given type.  Raise type

        exceptions where applicable.



        :param other_type: Type

        :param signature: dict(str -> list(AbstractVariableExpression))

        """
        raise NotImplementedError()

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True):
        """

        Replace every instance of 'variable' with 'expression'

        :param variable: ``Variable`` The variable to replace

        :param expression: ``Expression`` The expression with which to replace it

        :param replace_bound: bool Should bound variables be replaced?

        :param alpha_convert: bool Alpha convert automatically to avoid name clashes?

        """
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        assert isinstance(expression, Expression), (
            "%s is not an Expression" % expression
        )

        return self.visit_structured(
            lambda e: e.replace(variable, expression, replace_bound, alpha_convert),
            self.__class__,
        )

    def normalize(self, newvars=None):
        """Rename auto-generated unique variables"""

        def get_indiv_vars(e):
            if isinstance(e, IndividualVariableExpression):
                return {e}
            elif isinstance(e, AbstractVariableExpression):
                return set()
            else:
                return e.visit(
                    get_indiv_vars, lambda parts: reduce(operator.or_, parts, set())
                )

        result = self
        for i, e in enumerate(sorted(get_indiv_vars(self), key=lambda e: e.variable)):
            if isinstance(e, EventVariableExpression):
                newVar = e.__class__(Variable("e0%s" % (i + 1)))
            elif isinstance(e, IndividualVariableExpression):
                newVar = e.__class__(Variable("z%s" % (i + 1)))
            else:
                newVar = e
            result = result.replace(e.variable, newVar, True)
        return result

    def visit(self, function, combinator):
        """

        Recursively visit subexpressions.  Apply 'function' to each

        subexpression and pass the result of each function application

        to the 'combinator' for aggregation:



            return combinator(map(function, self.subexpressions))



        Bound variables are neither applied upon by the function nor given to

        the combinator.

        :param function: ``Function<Expression,T>`` to call on each subexpression

        :param combinator: ``Function<list<T>,R>`` to combine the results of the

        function calls

        :return: result of combination ``R``

        """
        raise NotImplementedError()

    def visit_structured(self, function, combinator):
        """

        Recursively visit subexpressions.  Apply 'function' to each

        subexpression and pass the result of each function application

        to the 'combinator' for aggregation.  The combinator must have

        the same signature as the constructor.  The function is not

        applied to bound variables, but they are passed to the

        combinator.

        :param function: ``Function`` to call on each subexpression

        :param combinator: ``Function`` with the same signature as the

        constructor, to combine the results of the function calls

        :return: result of combination

        """
        return self.visit(function, lambda parts: combinator(*parts))

    def __repr__(self):
        return f"<{self.__class__.__name__} {self}>"

    def __str__(self):
        return self.str()

    def variables(self):
        """

        Return a set of all the variables for binding substitution.

        The variables returned include all free (non-bound) individual

        variables and any variable starting with '?' or '@'.

        :return: set of ``Variable`` objects

        """
        return self.free() | {
            p for p in self.predicates() | self.constants() if re.match("^[?@]", p.name)
        }

    def free(self):
        """

        Return a set of all the free (non-bound) variables.  This includes

        both individual and predicate variables, but not constants.

        :return: set of ``Variable`` objects

        """
        return self.visit(
            lambda e: e.free(), lambda parts: reduce(operator.or_, parts, set())
        )

    def constants(self):
        """

        Return a set of individual constants (non-predicates).

        :return: set of ``Variable`` objects

        """
        return self.visit(
            lambda e: e.constants(), lambda parts: reduce(operator.or_, parts, set())
        )

    def predicates(self):
        """

        Return a set of predicates (constants, not variables).

        :return: set of ``Variable`` objects

        """
        return self.visit(
            lambda e: e.predicates(), lambda parts: reduce(operator.or_, parts, set())
        )

    def simplify(self):
        """

        :return: beta-converted version of this expression

        """
        return self.visit_structured(lambda e: e.simplify(), self.__class__)

    def make_VariableExpression(self, variable):
        return VariableExpression(variable)


class ApplicationExpression(Expression):
    r"""

    This class is used to represent two related types of logical expressions.



    The first is a Predicate Expression, such as "P(x,y)".  A predicate

    expression is comprised of a ``FunctionVariableExpression`` or

    ``ConstantExpression`` as the predicate and a list of Expressions as the

    arguments.



    The second is a an application of one expression to another, such as

    "(\x.dog(x))(fido)".



    The reason Predicate Expressions are treated as Application Expressions is

    that the Variable Expression predicate of the expression may be replaced

    with another Expression, such as a LambdaExpression, which would mean that

    the Predicate should be thought of as being applied to the arguments.



    The logical expression reader will always curry arguments in a application expression.

    So, "\x y.see(x,y)(john,mary)" will be represented internally as

    "((\x y.(see(x))(y))(john))(mary)".  This simplifies the internals since

    there will always be exactly one argument in an application.



    The str() method will usually print the curried forms of application

    expressions.  The one exception is when the the application expression is

    really a predicate expression (ie, underlying function is an

    ``AbstractVariableExpression``).  This means that the example from above

    will be returned as "(\x y.see(x,y)(john))(mary)".

    """

    def __init__(self, function, argument):
        """

        :param function: ``Expression``, for the function expression

        :param argument: ``Expression``, for the argument

        """
        assert isinstance(function, Expression), "%s is not an Expression" % function
        assert isinstance(argument, Expression), "%s is not an Expression" % argument
        self.function = function
        self.argument = argument

    def simplify(self):
        function = self.function.simplify()
        argument = self.argument.simplify()
        if isinstance(function, LambdaExpression):
            return function.term.replace(function.variable, argument).simplify()
        else:
            return self.__class__(function, argument)

    @property
    def type(self):
        if isinstance(self.function.type, ComplexType):
            return self.function.type.second
        else:
            return ANY_TYPE

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """:see Expression._set_type()"""
        assert isinstance(other_type, Type)

        if signature is None:
            signature = defaultdict(list)

        self.argument._set_type(ANY_TYPE, signature)
        try:
            self.function._set_type(
                ComplexType(self.argument.type, other_type), signature
            )
        except TypeResolutionException as e:
            raise TypeException(
                "The function '%s' is of type '%s' and cannot be applied "
                "to '%s' of type '%s'.  Its argument must match type '%s'."
                % (
                    self.function,
                    self.function.type,
                    self.argument,
                    self.argument.type,
                    self.function.type.first,
                )
            ) from e

    def findtype(self, variable):
        """:see Expression.findtype()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        if self.is_atom():
            function, args = self.uncurry()
        else:
            # It's not a predicate expression ("P(x,y)"), so leave args curried
            function = self.function
            args = [self.argument]

        found = [arg.findtype(variable) for arg in [function] + args]

        unique = []
        for f in found:
            if f != ANY_TYPE:
                if unique:
                    for u in unique:
                        if f.matches(u):
                            break
                else:
                    unique.append(f)

        if len(unique) == 1:
            return list(unique)[0]
        else:
            return ANY_TYPE

    def constants(self):
        """:see: Expression.constants()"""
        if isinstance(self.function, AbstractVariableExpression):
            function_constants = set()
        else:
            function_constants = self.function.constants()
        return function_constants | self.argument.constants()

    def predicates(self):
        """:see: Expression.predicates()"""
        if isinstance(self.function, ConstantExpression):
            function_preds = {self.function.variable}
        else:
            function_preds = self.function.predicates()
        return function_preds | self.argument.predicates()

    def visit(self, function, combinator):
        """:see: Expression.visit()"""
        return combinator([function(self.function), function(self.argument)])

    def __eq__(self, other):
        return (
            isinstance(other, ApplicationExpression)
            and self.function == other.function
            and self.argument == other.argument
        )

    def __ne__(self, other):
        return not self == other

    __hash__ = Expression.__hash__

    def __str__(self):
        # uncurry the arguments and find the base function
        if self.is_atom():
            function, args = self.uncurry()
            arg_str = ",".join("%s" % arg for arg in args)
        else:
            # Leave arguments curried
            function = self.function
            arg_str = "%s" % self.argument

        function_str = "%s" % function
        parenthesize_function = False
        if isinstance(function, LambdaExpression):
            if isinstance(function.term, ApplicationExpression):
                if not isinstance(function.term.function, AbstractVariableExpression):
                    parenthesize_function = True
            elif not isinstance(function.term, BooleanExpression):
                parenthesize_function = True
        elif isinstance(function, ApplicationExpression):
            parenthesize_function = True

        if parenthesize_function:
            function_str = Tokens.OPEN + function_str + Tokens.CLOSE

        return function_str + Tokens.OPEN + arg_str + Tokens.CLOSE

    def uncurry(self):
        """

        Uncurry this application expression



        return: A tuple (base-function, arg-list)

        """
        function = self.function
        args = [self.argument]
        while isinstance(function, ApplicationExpression):
            # (\x.\y.sees(x,y)(john))(mary)
            args.insert(0, function.argument)
            function = function.function
        return (function, args)

    @property
    def pred(self):
        """

        Return uncurried base-function.

        If this is an atom, then the result will be a variable expression.

        Otherwise, it will be a lambda expression.

        """
        return self.uncurry()[0]

    @property
    def args(self):
        """

        Return uncurried arg-list

        """
        return self.uncurry()[1]

    def is_atom(self):
        """

        Is this expression an atom (as opposed to a lambda expression applied

        to a term)?

        """
        return isinstance(self.pred, AbstractVariableExpression)


@total_ordering
class AbstractVariableExpression(Expression):
    """This class represents a variable to be used as a predicate or entity"""

    def __init__(self, variable):
        """

        :param variable: ``Variable``, for the variable

        """
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        self.variable = variable

    def simplify(self):
        return self

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True):
        """:see: Expression.replace()"""
        assert isinstance(variable, Variable), "%s is not an Variable" % variable
        assert isinstance(expression, Expression), (
            "%s is not an Expression" % expression
        )
        if self.variable == variable:
            return expression
        else:
            return self

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """:see Expression._set_type()"""
        assert isinstance(other_type, Type)

        if signature is None:
            signature = defaultdict(list)

        resolution = other_type
        for varEx in signature[self.variable.name]:
            resolution = varEx.type.resolve(resolution)
            if not resolution:
                raise InconsistentTypeHierarchyException(self)

        signature[self.variable.name].append(self)
        for varEx in signature[self.variable.name]:
            varEx.type = resolution

    def findtype(self, variable):
        """:see Expression.findtype()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        if self.variable == variable:
            return self.type
        else:
            return ANY_TYPE

    def predicates(self):
        """:see: Expression.predicates()"""
        return set()

    def __eq__(self, other):
        """Allow equality between instances of ``AbstractVariableExpression``

        subtypes."""
        return (
            isinstance(other, AbstractVariableExpression)
            and self.variable == other.variable
        )

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, AbstractVariableExpression):
            raise TypeError
        return self.variable < other.variable

    __hash__ = Expression.__hash__

    def __str__(self):
        return "%s" % self.variable


class IndividualVariableExpression(AbstractVariableExpression):
    """This class represents variables that take the form of a single lowercase

    character (other than 'e') followed by zero or more digits."""

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """:see Expression._set_type()"""
        assert isinstance(other_type, Type)

        if signature is None:
            signature = defaultdict(list)

        if not other_type.matches(ENTITY_TYPE):
            raise IllegalTypeException(self, other_type, ENTITY_TYPE)

        signature[self.variable.name].append(self)

    def _get_type(self):
        return ENTITY_TYPE

    type = property(_get_type, _set_type)

    def free(self):
        """:see: Expression.free()"""
        return {self.variable}

    def constants(self):
        """:see: Expression.constants()"""
        return set()


class FunctionVariableExpression(AbstractVariableExpression):
    """This class represents variables that take the form of a single uppercase

    character followed by zero or more digits."""

    type = ANY_TYPE

    def free(self):
        """:see: Expression.free()"""
        return {self.variable}

    def constants(self):
        """:see: Expression.constants()"""
        return set()


class EventVariableExpression(IndividualVariableExpression):
    """This class represents variables that take the form of a single lowercase

    'e' character followed by zero or more digits."""

    type = EVENT_TYPE


class ConstantExpression(AbstractVariableExpression):
    """This class represents variables that do not take the form of a single

    character followed by zero or more digits."""

    type = ENTITY_TYPE

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """:see Expression._set_type()"""
        assert isinstance(other_type, Type)

        if signature is None:
            signature = defaultdict(list)

        if other_type == ANY_TYPE:
            # entity type by default, for individuals
            resolution = ENTITY_TYPE
        else:
            resolution = other_type
            if self.type != ENTITY_TYPE:
                resolution = resolution.resolve(self.type)

        for varEx in signature[self.variable.name]:
            resolution = varEx.type.resolve(resolution)
            if not resolution:
                raise InconsistentTypeHierarchyException(self)

        signature[self.variable.name].append(self)
        for varEx in signature[self.variable.name]:
            varEx.type = resolution

    def free(self):
        """:see: Expression.free()"""
        return set()

    def constants(self):
        """:see: Expression.constants()"""
        return {self.variable}


def VariableExpression(variable):
    """

    This is a factory method that instantiates and returns a subtype of

    ``AbstractVariableExpression`` appropriate for the given variable.

    """
    assert isinstance(variable, Variable), "%s is not a Variable" % variable
    if is_indvar(variable.name):
        return IndividualVariableExpression(variable)
    elif is_funcvar(variable.name):
        return FunctionVariableExpression(variable)
    elif is_eventvar(variable.name):
        return EventVariableExpression(variable)
    else:
        return ConstantExpression(variable)


class VariableBinderExpression(Expression):
    """This an abstract class for any Expression that binds a variable in an

    Expression.  This includes LambdaExpressions and Quantified Expressions"""

    def __init__(self, variable, term):
        """

        :param variable: ``Variable``, for the variable

        :param term: ``Expression``, for the term

        """
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        assert isinstance(term, Expression), "%s is not an Expression" % term
        self.variable = variable
        self.term = term

    def replace(self, variable, expression, replace_bound=False, alpha_convert=True):
        """:see: Expression.replace()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        assert isinstance(expression, Expression), (
            "%s is not an Expression" % expression
        )
        # if the bound variable is the thing being replaced
        if self.variable == variable:
            if replace_bound:
                assert isinstance(expression, AbstractVariableExpression), (
                    "%s is not a AbstractVariableExpression" % expression
                )
                return self.__class__(
                    expression.variable,
                    self.term.replace(variable, expression, True, alpha_convert),
                )
            else:
                return self
        else:
            # if the bound variable appears in the expression, then it must
            # be alpha converted to avoid a conflict
            if alpha_convert and self.variable in expression.free():
                self = self.alpha_convert(unique_variable(pattern=self.variable))

            # replace in the term
            return self.__class__(
                self.variable,
                self.term.replace(variable, expression, replace_bound, alpha_convert),
            )

    def alpha_convert(self, newvar):
        """Rename all occurrences of the variable introduced by this variable

        binder in the expression to ``newvar``.

        :param newvar: ``Variable``, for the new variable

        """
        assert isinstance(newvar, Variable), "%s is not a Variable" % newvar
        return self.__class__(
            newvar, self.term.replace(self.variable, VariableExpression(newvar), True)
        )

    def free(self):
        """:see: Expression.free()"""
        return self.term.free() - {self.variable}

    def findtype(self, variable):
        """:see Expression.findtype()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        if variable == self.variable:
            return ANY_TYPE
        else:
            return self.term.findtype(variable)

    def visit(self, function, combinator):
        """:see: Expression.visit()"""
        return combinator([function(self.term)])

    def visit_structured(self, function, combinator):
        """:see: Expression.visit_structured()"""
        return combinator(self.variable, function(self.term))

    def __eq__(self, other):
        r"""Defines equality modulo alphabetic variance.  If we are comparing

        \x.M  and \y.N, then check equality of M and N[x/y]."""
        if isinstance(self, other.__class__) or isinstance(other, self.__class__):
            if self.variable == other.variable:
                return self.term == other.term
            else:
                # Comparing \x.M  and \y.N.  Relabel y in N with x and continue.
                varex = VariableExpression(self.variable)
                return self.term == other.term.replace(other.variable, varex)
        else:
            return False

    def __ne__(self, other):
        return not self == other

    __hash__ = Expression.__hash__


class LambdaExpression(VariableBinderExpression):
    @property
    def type(self):
        return ComplexType(self.term.findtype(self.variable), self.term.type)

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """:see Expression._set_type()"""
        assert isinstance(other_type, Type)

        if signature is None:
            signature = defaultdict(list)

        self.term._set_type(other_type.second, signature)
        if not self.type.resolve(other_type):
            raise TypeResolutionException(self, other_type)

    def __str__(self):
        variables = [self.variable]
        term = self.term
        while term.__class__ == self.__class__:
            variables.append(term.variable)
            term = term.term
        return (
            Tokens.LAMBDA
            + " ".join("%s" % v for v in variables)
            + Tokens.DOT
            + "%s" % term
        )


class QuantifiedExpression(VariableBinderExpression):
    @property
    def type(self):
        return TRUTH_TYPE

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """:see Expression._set_type()"""
        assert isinstance(other_type, Type)

        if signature is None:
            signature = defaultdict(list)

        if not other_type.matches(TRUTH_TYPE):
            raise IllegalTypeException(self, other_type, TRUTH_TYPE)
        self.term._set_type(TRUTH_TYPE, signature)

    def __str__(self):
        variables = [self.variable]
        term = self.term
        while term.__class__ == self.__class__:
            variables.append(term.variable)
            term = term.term
        return (
            self.getQuantifier()
            + " "
            + " ".join("%s" % v for v in variables)
            + Tokens.DOT
            + "%s" % term
        )


class ExistsExpression(QuantifiedExpression):
    def getQuantifier(self):
        return Tokens.EXISTS


class AllExpression(QuantifiedExpression):
    def getQuantifier(self):
        return Tokens.ALL


class IotaExpression(QuantifiedExpression):
    def getQuantifier(self):
        return Tokens.IOTA


class NegatedExpression(Expression):
    def __init__(self, term):
        assert isinstance(term, Expression), "%s is not an Expression" % term
        self.term = term

    @property
    def type(self):
        return TRUTH_TYPE

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """:see Expression._set_type()"""
        assert isinstance(other_type, Type)

        if signature is None:
            signature = defaultdict(list)

        if not other_type.matches(TRUTH_TYPE):
            raise IllegalTypeException(self, other_type, TRUTH_TYPE)
        self.term._set_type(TRUTH_TYPE, signature)

    def findtype(self, variable):
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        return self.term.findtype(variable)

    def visit(self, function, combinator):
        """:see: Expression.visit()"""
        return combinator([function(self.term)])

    def negate(self):
        """:see: Expression.negate()"""
        return self.term

    def __eq__(self, other):
        return isinstance(other, NegatedExpression) and self.term == other.term

    def __ne__(self, other):
        return not self == other

    __hash__ = Expression.__hash__

    def __str__(self):
        return Tokens.NOT + "%s" % self.term


class BinaryExpression(Expression):
    def __init__(self, first, second):
        assert isinstance(first, Expression), "%s is not an Expression" % first
        assert isinstance(second, Expression), "%s is not an Expression" % second
        self.first = first
        self.second = second

    @property
    def type(self):
        return TRUTH_TYPE

    def findtype(self, variable):
        """:see Expression.findtype()"""
        assert isinstance(variable, Variable), "%s is not a Variable" % variable
        f = self.first.findtype(variable)
        s = self.second.findtype(variable)
        if f == s or s == ANY_TYPE:
            return f
        elif f == ANY_TYPE:
            return s
        else:
            return ANY_TYPE

    def visit(self, function, combinator):
        """:see: Expression.visit()"""
        return combinator([function(self.first), function(self.second)])

    def __eq__(self, other):
        return (
            (isinstance(self, other.__class__) or isinstance(other, self.__class__))
            and self.first == other.first
            and self.second == other.second
        )

    def __ne__(self, other):
        return not self == other

    __hash__ = Expression.__hash__

    def __str__(self):
        first = self._str_subex(self.first)
        second = self._str_subex(self.second)
        return Tokens.OPEN + first + " " + self.getOp() + " " + second + Tokens.CLOSE

    def _str_subex(self, subex):
        return "%s" % subex


class BooleanExpression(BinaryExpression):
    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """:see Expression._set_type()"""
        assert isinstance(other_type, Type)

        if signature is None:
            signature = defaultdict(list)

        if not other_type.matches(TRUTH_TYPE):
            raise IllegalTypeException(self, other_type, TRUTH_TYPE)
        self.first._set_type(TRUTH_TYPE, signature)
        self.second._set_type(TRUTH_TYPE, signature)


class AndExpression(BooleanExpression):
    """This class represents conjunctions"""

    def getOp(self):
        return Tokens.AND

    def _str_subex(self, subex):
        s = "%s" % subex
        if isinstance(subex, AndExpression):
            return s[1:-1]
        return s


class OrExpression(BooleanExpression):
    """This class represents disjunctions"""

    def getOp(self):
        return Tokens.OR

    def _str_subex(self, subex):
        s = "%s" % subex
        if isinstance(subex, OrExpression):
            return s[1:-1]
        return s


class ImpExpression(BooleanExpression):
    """This class represents implications"""

    def getOp(self):
        return Tokens.IMP


class IffExpression(BooleanExpression):
    """This class represents biconditionals"""

    def getOp(self):
        return Tokens.IFF


class EqualityExpression(BinaryExpression):
    """This class represents equality expressions like "(x = y)"."""

    def _set_type(self, other_type=ANY_TYPE, signature=None):
        """:see Expression._set_type()"""
        assert isinstance(other_type, Type)

        if signature is None:
            signature = defaultdict(list)

        if not other_type.matches(TRUTH_TYPE):
            raise IllegalTypeException(self, other_type, TRUTH_TYPE)
        self.first._set_type(ENTITY_TYPE, signature)
        self.second._set_type(ENTITY_TYPE, signature)

    def getOp(self):
        return Tokens.EQ


### Utilities


class LogicalExpressionException(Exception):
    def __init__(self, index, message):
        self.index = index
        Exception.__init__(self, message)


class UnexpectedTokenException(LogicalExpressionException):
    def __init__(self, index, unexpected=None, expected=None, message=None):
        if unexpected and expected:
            msg = "Unexpected token: '%s'.  " "Expected token '%s'." % (
                unexpected,
                expected,
            )
        elif unexpected:
            msg = "Unexpected token: '%s'." % unexpected
            if message:
                msg += "  " + message
        else:
            msg = "Expected token '%s'." % expected
        LogicalExpressionException.__init__(self, index, msg)


class ExpectedMoreTokensException(LogicalExpressionException):
    def __init__(self, index, message=None):
        if not message:
            message = "More tokens expected."
        LogicalExpressionException.__init__(
            self, index, "End of input found.  " + message
        )


def is_indvar(expr):
    """

    An individual variable must be a single lowercase character other than 'e',

    followed by zero or more digits.



    :param expr: str

    :return: bool True if expr is of the correct form

    """
    assert isinstance(expr, str), "%s is not a string" % expr
    return re.match(r"^[a-df-z]\d*$", expr) is not None


def is_funcvar(expr):
    """

    A function variable must be a single uppercase character followed by

    zero or more digits.



    :param expr: str

    :return: bool True if expr is of the correct form

    """
    assert isinstance(expr, str), "%s is not a string" % expr
    return re.match(r"^[A-Z]\d*$", expr) is not None


def is_eventvar(expr):
    """

    An event variable must be a single lowercase 'e' character followed by

    zero or more digits.



    :param expr: str

    :return: bool True if expr is of the correct form

    """
    assert isinstance(expr, str), "%s is not a string" % expr
    return re.match(r"^e\d*$", expr) is not None


def demo():
    lexpr = Expression.fromstring
    print("=" * 20 + "Test reader" + "=" * 20)
    print(lexpr(r"john"))
    print(lexpr(r"man(x)"))
    print(lexpr(r"-man(x)"))
    print(lexpr(r"(man(x) & tall(x) & walks(x))"))
    print(lexpr(r"exists x.(man(x) & tall(x) & walks(x))"))
    print(lexpr(r"\x.man(x)"))
    print(lexpr(r"\x.man(x)(john)"))
    print(lexpr(r"\x y.sees(x,y)"))
    print(lexpr(r"\x y.sees(x,y)(a,b)"))
    print(lexpr(r"(\x.exists y.walks(x,y))(x)"))
    print(lexpr(r"exists x.x = y"))
    print(lexpr(r"exists x.(x = y)"))
    print(lexpr("P(x) & x=y & P(y)"))
    print(lexpr(r"\P Q.exists x.(P(x) & Q(x))"))
    print(lexpr(r"man(x) <-> tall(x)"))

    print("=" * 20 + "Test simplify" + "=" * 20)
    print(lexpr(r"\x.\y.sees(x,y)(john)(mary)").simplify())
    print(lexpr(r"\x.\y.sees(x,y)(john, mary)").simplify())
    print(lexpr(r"all x.(man(x) & (\x.exists y.walks(x,y))(x))").simplify())
    print(lexpr(r"(\P.\Q.exists x.(P(x) & Q(x)))(\x.dog(x))(\x.bark(x))").simplify())

    print("=" * 20 + "Test alpha conversion and binder expression equality" + "=" * 20)
    e1 = lexpr("exists x.P(x)")
    print(e1)
    e2 = e1.alpha_convert(Variable("z"))
    print(e2)
    print(e1 == e2)


def demo_errors():
    print("=" * 20 + "Test reader errors" + "=" * 20)
    demoException("(P(x) & Q(x)")
    demoException("((P(x) &) & Q(x))")
    demoException("P(x) -> ")
    demoException("P(x")
    demoException("P(x,")
    demoException("P(x,)")
    demoException("exists")
    demoException("exists x.")
    demoException("\\")
    demoException("\\ x y.")
    demoException("P(x)Q(x)")
    demoException("(P(x)Q(x)")
    demoException("exists x -> y")


def demoException(s):
    try:
        Expression.fromstring(s)
    except LogicalExpressionException as e:
        print(f"{e.__class__.__name__}: {e}")


def printtype(ex):
    print(f"{ex.str()} : {ex.type}")


if __name__ == "__main__":
    demo()
#    demo_errors()