File size: 14,147 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# Natural Language Toolkit: Combinatory Categorial Grammar
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Graeme Gange <ggange@csse.unimelb.edu.au>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

The lexicon is constructed by calling

``lexicon.fromstring(<lexicon string>)``.



In order to construct a parser, you also need a rule set.

The standard English rules are provided in chart as

``chart.DefaultRuleSet``.



The parser can then be constructed by calling, for example:

``parser = chart.CCGChartParser(<lexicon>, <ruleset>)``



Parsing is then performed by running

``parser.parse(<sentence>.split())``.



While this returns a list of trees, the default representation

of the produced trees is not very enlightening, particularly

given that it uses the same tree class as the CFG parsers.

It is probably better to call:

``chart.printCCGDerivation(<parse tree extracted from list>)``

which should print a nice representation of the derivation.



This entire process is shown far more clearly in the demonstration:

python chart.py

"""

import itertools

from nltk.ccg.combinator import *
from nltk.ccg.combinator import (
    BackwardApplication,
    BackwardBx,
    BackwardComposition,
    BackwardSx,
    BackwardT,
    ForwardApplication,
    ForwardComposition,
    ForwardSubstitution,
    ForwardT,
)
from nltk.ccg.lexicon import Token, fromstring
from nltk.ccg.logic import *
from nltk.parse import ParserI
from nltk.parse.chart import AbstractChartRule, Chart, EdgeI
from nltk.sem.logic import *
from nltk.tree import Tree


# Based on the EdgeI class from NLTK.
# A number of the properties of the EdgeI interface don't
# transfer well to CCGs, however.
class CCGEdge(EdgeI):
    def __init__(self, span, categ, rule):
        self._span = span
        self._categ = categ
        self._rule = rule
        self._comparison_key = (span, categ, rule)

    # Accessors
    def lhs(self):
        return self._categ

    def span(self):
        return self._span

    def start(self):
        return self._span[0]

    def end(self):
        return self._span[1]

    def length(self):
        return self._span[1] - self.span[0]

    def rhs(self):
        return ()

    def dot(self):
        return 0

    def is_complete(self):
        return True

    def is_incomplete(self):
        return False

    def nextsym(self):
        return None

    def categ(self):
        return self._categ

    def rule(self):
        return self._rule


class CCGLeafEdge(EdgeI):
    """

    Class representing leaf edges in a CCG derivation.

    """

    def __init__(self, pos, token, leaf):
        self._pos = pos
        self._token = token
        self._leaf = leaf
        self._comparison_key = (pos, token.categ(), leaf)

    # Accessors
    def lhs(self):
        return self._token.categ()

    def span(self):
        return (self._pos, self._pos + 1)

    def start(self):
        return self._pos

    def end(self):
        return self._pos + 1

    def length(self):
        return 1

    def rhs(self):
        return self._leaf

    def dot(self):
        return 0

    def is_complete(self):
        return True

    def is_incomplete(self):
        return False

    def nextsym(self):
        return None

    def token(self):
        return self._token

    def categ(self):
        return self._token.categ()

    def leaf(self):
        return self._leaf


class BinaryCombinatorRule(AbstractChartRule):
    """

    Class implementing application of a binary combinator to a chart.

    Takes the directed combinator to apply.

    """

    NUMEDGES = 2

    def __init__(self, combinator):
        self._combinator = combinator

    # Apply a combinator
    def apply(self, chart, grammar, left_edge, right_edge):
        # The left & right edges must be touching.
        if not (left_edge.end() == right_edge.start()):
            return

        # Check if the two edges are permitted to combine.
        # If so, generate the corresponding edge.
        if self._combinator.can_combine(left_edge.categ(), right_edge.categ()):
            for res in self._combinator.combine(left_edge.categ(), right_edge.categ()):
                new_edge = CCGEdge(
                    span=(left_edge.start(), right_edge.end()),
                    categ=res,
                    rule=self._combinator,
                )
                if chart.insert(new_edge, (left_edge, right_edge)):
                    yield new_edge

    # The representation of the combinator (for printing derivations)
    def __str__(self):
        return "%s" % self._combinator


# Type-raising must be handled slightly differently to the other rules, as the
# resulting rules only span a single edge, rather than both edges.


class ForwardTypeRaiseRule(AbstractChartRule):
    """

    Class for applying forward type raising

    """

    NUMEDGES = 2

    def __init__(self):
        self._combinator = ForwardT

    def apply(self, chart, grammar, left_edge, right_edge):
        if not (left_edge.end() == right_edge.start()):
            return

        for res in self._combinator.combine(left_edge.categ(), right_edge.categ()):
            new_edge = CCGEdge(span=left_edge.span(), categ=res, rule=self._combinator)
            if chart.insert(new_edge, (left_edge,)):
                yield new_edge

    def __str__(self):
        return "%s" % self._combinator


class BackwardTypeRaiseRule(AbstractChartRule):
    """

    Class for applying backward type raising.

    """

    NUMEDGES = 2

    def __init__(self):
        self._combinator = BackwardT

    def apply(self, chart, grammar, left_edge, right_edge):
        if not (left_edge.end() == right_edge.start()):
            return

        for res in self._combinator.combine(left_edge.categ(), right_edge.categ()):
            new_edge = CCGEdge(span=right_edge.span(), categ=res, rule=self._combinator)
            if chart.insert(new_edge, (right_edge,)):
                yield new_edge

    def __str__(self):
        return "%s" % self._combinator


# Common sets of combinators used for English derivations.
ApplicationRuleSet = [
    BinaryCombinatorRule(ForwardApplication),
    BinaryCombinatorRule(BackwardApplication),
]
CompositionRuleSet = [
    BinaryCombinatorRule(ForwardComposition),
    BinaryCombinatorRule(BackwardComposition),
    BinaryCombinatorRule(BackwardBx),
]
SubstitutionRuleSet = [
    BinaryCombinatorRule(ForwardSubstitution),
    BinaryCombinatorRule(BackwardSx),
]
TypeRaiseRuleSet = [ForwardTypeRaiseRule(), BackwardTypeRaiseRule()]

# The standard English rule set.
DefaultRuleSet = (
    ApplicationRuleSet + CompositionRuleSet + SubstitutionRuleSet + TypeRaiseRuleSet
)


class CCGChartParser(ParserI):
    """

    Chart parser for CCGs.

    Based largely on the ChartParser class from NLTK.

    """

    def __init__(self, lexicon, rules, trace=0):
        self._lexicon = lexicon
        self._rules = rules
        self._trace = trace

    def lexicon(self):
        return self._lexicon

    # Implements the CYK algorithm
    def parse(self, tokens):
        tokens = list(tokens)
        chart = CCGChart(list(tokens))
        lex = self._lexicon

        # Initialize leaf edges.
        for index in range(chart.num_leaves()):
            for token in lex.categories(chart.leaf(index)):
                new_edge = CCGLeafEdge(index, token, chart.leaf(index))
                chart.insert(new_edge, ())

        # Select a span for the new edges
        for span in range(2, chart.num_leaves() + 1):
            for start in range(0, chart.num_leaves() - span + 1):
                # Try all possible pairs of edges that could generate
                # an edge for that span
                for part in range(1, span):
                    lstart = start
                    mid = start + part
                    rend = start + span

                    for left in chart.select(span=(lstart, mid)):
                        for right in chart.select(span=(mid, rend)):
                            # Generate all possible combinations of the two edges
                            for rule in self._rules:
                                edges_added_by_rule = 0
                                for newedge in rule.apply(chart, lex, left, right):
                                    edges_added_by_rule += 1

        # Output the resulting parses
        return chart.parses(lex.start())


class CCGChart(Chart):
    def __init__(self, tokens):
        Chart.__init__(self, tokens)

    # Constructs the trees for a given parse. Unfortnunately, the parse trees need to be
    # constructed slightly differently to those in the default Chart class, so it has to
    # be reimplemented
    def _trees(self, edge, complete, memo, tree_class):
        assert complete, "CCGChart cannot build incomplete trees"

        if edge in memo:
            return memo[edge]

        if isinstance(edge, CCGLeafEdge):
            word = tree_class(edge.token(), [self._tokens[edge.start()]])
            leaf = tree_class((edge.token(), "Leaf"), [word])
            memo[edge] = [leaf]
            return [leaf]

        memo[edge] = []
        trees = []

        for cpl in self.child_pointer_lists(edge):
            child_choices = [self._trees(cp, complete, memo, tree_class) for cp in cpl]
            for children in itertools.product(*child_choices):
                lhs = (
                    Token(
                        self._tokens[edge.start() : edge.end()],
                        edge.lhs(),
                        compute_semantics(children, edge),
                    ),
                    str(edge.rule()),
                )
                trees.append(tree_class(lhs, children))

        memo[edge] = trees
        return trees


def compute_semantics(children, edge):
    if children[0].label()[0].semantics() is None:
        return None

    if len(children) == 2:
        if isinstance(edge.rule(), BackwardCombinator):
            children = [children[1], children[0]]

        combinator = edge.rule()._combinator
        function = children[0].label()[0].semantics()
        argument = children[1].label()[0].semantics()

        if isinstance(combinator, UndirectedFunctionApplication):
            return compute_function_semantics(function, argument)
        elif isinstance(combinator, UndirectedComposition):
            return compute_composition_semantics(function, argument)
        elif isinstance(combinator, UndirectedSubstitution):
            return compute_substitution_semantics(function, argument)
        else:
            raise AssertionError("Unsupported combinator '" + combinator + "'")
    else:
        return compute_type_raised_semantics(children[0].label()[0].semantics())


# --------
# Displaying derivations
# --------
def printCCGDerivation(tree):
    # Get the leaves and initial categories
    leafcats = tree.pos()
    leafstr = ""
    catstr = ""

    # Construct a string with both the leaf word and corresponding
    # category aligned.
    for (leaf, cat) in leafcats:
        str_cat = "%s" % cat
        nextlen = 2 + max(len(leaf), len(str_cat))
        lcatlen = (nextlen - len(str_cat)) // 2
        rcatlen = lcatlen + (nextlen - len(str_cat)) % 2
        catstr += " " * lcatlen + str_cat + " " * rcatlen
        lleaflen = (nextlen - len(leaf)) // 2
        rleaflen = lleaflen + (nextlen - len(leaf)) % 2
        leafstr += " " * lleaflen + leaf + " " * rleaflen
    print(leafstr.rstrip())
    print(catstr.rstrip())

    # Display the derivation steps
    printCCGTree(0, tree)


# Prints the sequence of derivation steps.
def printCCGTree(lwidth, tree):
    rwidth = lwidth

    # Is a leaf (word).
    # Increment the span by the space occupied by the leaf.
    if not isinstance(tree, Tree):
        return 2 + lwidth + len(tree)

    # Find the width of the current derivation step
    for child in tree:
        rwidth = max(rwidth, printCCGTree(rwidth, child))

    # Is a leaf node.
    # Don't print anything, but account for the space occupied.
    if not isinstance(tree.label(), tuple):
        return max(
            rwidth, 2 + lwidth + len("%s" % tree.label()), 2 + lwidth + len(tree[0])
        )

    (token, op) = tree.label()

    if op == "Leaf":
        return rwidth

    # Pad to the left with spaces, followed by a sequence of '-'
    # and the derivation rule.
    print(lwidth * " " + (rwidth - lwidth) * "-" + "%s" % op)
    # Print the resulting category on a new line.
    str_res = "%s" % (token.categ())
    if token.semantics() is not None:
        str_res += " {" + str(token.semantics()) + "}"
    respadlen = (rwidth - lwidth - len(str_res)) // 2 + lwidth
    print(respadlen * " " + str_res)
    return rwidth


### Demonstration code

# Construct the lexicon
lex = fromstring(
    """

    :- S, NP, N, VP    # Primitive categories, S is the target primitive



    Det :: NP/N         # Family of words

    Pro :: NP

    TV :: VP/NP

    Modal :: (S\\NP)/VP # Backslashes need to be escaped



    I => Pro             # Word -> Category mapping

    you => Pro



    the => Det



    # Variables have the special keyword 'var'

    # '.' prevents permutation

    # ',' prevents composition

    and => var\\.,var/.,var



    which => (N\\N)/(S/NP)



    will => Modal # Categories can be either explicit, or families.

    might => Modal



    cook => TV

    eat => TV



    mushrooms => N

    parsnips => N

    bacon => N

    """
)


def demo():
    parser = CCGChartParser(lex, DefaultRuleSet)
    for parse in parser.parse("I might cook and eat the bacon".split()):
        printCCGDerivation(parse)


if __name__ == "__main__":
    demo()