File size: 17,301 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Natural Language Toolkit: Machine Translation
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Uday Krishna <udaykrishna5@gmail.com>
# Contributor: Tom Aarsen
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT


from itertools import chain, product
from typing import Callable, Iterable, List, Tuple

from nltk.corpus import WordNetCorpusReader, wordnet
from nltk.stem.api import StemmerI
from nltk.stem.porter import PorterStemmer


def _generate_enums(

    hypothesis: Iterable[str],

    reference: Iterable[str],

    preprocess: Callable[[str], str] = str.lower,

) -> Tuple[List[Tuple[int, str]], List[Tuple[int, str]]]:
    """

    Takes in pre-tokenized inputs for hypothesis and reference and returns

    enumerated word lists for each of them



    :param hypothesis: pre-tokenized hypothesis

    :param reference: pre-tokenized reference

    :preprocess: preprocessing method (default str.lower)

    :return: enumerated words list

    """
    if isinstance(hypothesis, str):
        raise TypeError(
            f'"hypothesis" expects pre-tokenized hypothesis (Iterable[str]): {hypothesis}'
        )

    if isinstance(reference, str):
        raise TypeError(
            f'"reference" expects pre-tokenized reference (Iterable[str]): {reference}'
        )

    enum_hypothesis_list = list(enumerate(map(preprocess, hypothesis)))
    enum_reference_list = list(enumerate(map(preprocess, reference)))
    return enum_hypothesis_list, enum_reference_list


def exact_match(

    hypothesis: Iterable[str], reference: Iterable[str]

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int, str]]]:
    """

    matches exact words in hypothesis and reference

    and returns a word mapping based on the enumerated

    word id between hypothesis and reference



    :param hypothesis: pre-tokenized hypothesis

    :param reference: pre-tokenized reference

    :return: enumerated matched tuples, enumerated unmatched hypothesis tuples,

             enumerated unmatched reference tuples

    """
    enum_hypothesis_list, enum_reference_list = _generate_enums(hypothesis, reference)
    return _match_enums(enum_hypothesis_list, enum_reference_list)


def _match_enums(

    enum_hypothesis_list: List[Tuple[int, str]],

    enum_reference_list: List[Tuple[int, str]],

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int, str]]]:
    """

    matches exact words in hypothesis and reference and returns

    a word mapping between enum_hypothesis_list and enum_reference_list

    based on the enumerated word id.



    :param enum_hypothesis_list: enumerated hypothesis list

    :param enum_reference_list: enumerated reference list

    :return: enumerated matched tuples, enumerated unmatched hypothesis tuples,

             enumerated unmatched reference tuples

    """
    word_match = []
    for i in range(len(enum_hypothesis_list))[::-1]:
        for j in range(len(enum_reference_list))[::-1]:
            if enum_hypothesis_list[i][1] == enum_reference_list[j][1]:
                word_match.append(
                    (enum_hypothesis_list[i][0], enum_reference_list[j][0])
                )
                enum_hypothesis_list.pop(i)
                enum_reference_list.pop(j)
                break
    return word_match, enum_hypothesis_list, enum_reference_list


def _enum_stem_match(

    enum_hypothesis_list: List[Tuple[int, str]],

    enum_reference_list: List[Tuple[int, str]],

    stemmer: StemmerI = PorterStemmer(),

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int, str]]]:
    """

    Stems each word and matches them in hypothesis and reference

    and returns a word mapping between enum_hypothesis_list and

    enum_reference_list based on the enumerated word id. The function also

    returns a enumerated list of unmatched words for hypothesis and reference.



    :param enum_hypothesis_list: enumerated hypothesis list

    :param enum_reference_list: enumerated reference list

    :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer())

    :return: enumerated matched tuples, enumerated unmatched hypothesis tuples,

             enumerated unmatched reference tuples

    """
    stemmed_enum_hypothesis_list = [
        (word_pair[0], stemmer.stem(word_pair[1])) for word_pair in enum_hypothesis_list
    ]

    stemmed_enum_reference_list = [
        (word_pair[0], stemmer.stem(word_pair[1])) for word_pair in enum_reference_list
    ]

    return _match_enums(stemmed_enum_hypothesis_list, stemmed_enum_reference_list)


def stem_match(

    hypothesis: Iterable[str],

    reference: Iterable[str],

    stemmer: StemmerI = PorterStemmer(),

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int, str]]]:
    """

    Stems each word and matches them in hypothesis and reference

    and returns a word mapping between hypothesis and reference



    :param hypothesis: pre-tokenized hypothesis

    :param reference: pre-tokenized reference

    :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer())

    :return: enumerated matched tuples, enumerated unmatched hypothesis tuples,

             enumerated unmatched reference tuples

    """
    enum_hypothesis_list, enum_reference_list = _generate_enums(hypothesis, reference)
    return _enum_stem_match(enum_hypothesis_list, enum_reference_list, stemmer=stemmer)


def _enum_wordnetsyn_match(

    enum_hypothesis_list: List[Tuple[int, str]],

    enum_reference_list: List[Tuple[int, str]],

    wordnet: WordNetCorpusReader = wordnet,

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int, str]]]:
    """

    Matches each word in reference to a word in hypothesis

    if any synonym of a hypothesis word is the exact match

    to the reference word.



    :param enum_hypothesis_list: enumerated hypothesis list

    :param enum_reference_list: enumerated reference list

    :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet)

    """
    word_match = []
    for i in range(len(enum_hypothesis_list))[::-1]:
        hypothesis_syns = set(
            chain.from_iterable(
                (
                    lemma.name()
                    for lemma in synset.lemmas()
                    if lemma.name().find("_") < 0
                )
                for synset in wordnet.synsets(enum_hypothesis_list[i][1])
            )
        ).union({enum_hypothesis_list[i][1]})
        for j in range(len(enum_reference_list))[::-1]:
            if enum_reference_list[j][1] in hypothesis_syns:
                word_match.append(
                    (enum_hypothesis_list[i][0], enum_reference_list[j][0])
                )
                enum_hypothesis_list.pop(i)
                enum_reference_list.pop(j)
                break
    return word_match, enum_hypothesis_list, enum_reference_list


def wordnetsyn_match(

    hypothesis: Iterable[str],

    reference: Iterable[str],

    wordnet: WordNetCorpusReader = wordnet,

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int, str]]]:
    """

    Matches each word in reference to a word in hypothesis if any synonym

    of a hypothesis word is the exact match to the reference word.



    :param hypothesis: pre-tokenized hypothesis

    :param reference: pre-tokenized reference

    :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet)

    :return: list of mapped tuples

    """
    enum_hypothesis_list, enum_reference_list = _generate_enums(hypothesis, reference)
    return _enum_wordnetsyn_match(
        enum_hypothesis_list, enum_reference_list, wordnet=wordnet
    )


def _enum_align_words(

    enum_hypothesis_list: List[Tuple[int, str]],

    enum_reference_list: List[Tuple[int, str]],

    stemmer: StemmerI = PorterStemmer(),

    wordnet: WordNetCorpusReader = wordnet,

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int, str]]]:
    """

    Aligns/matches words in the hypothesis to reference by sequentially

    applying exact match, stemmed match and wordnet based synonym match.

    in case there are multiple matches the match which has the least number

    of crossing is chosen. Takes enumerated list as input instead of

    string input



    :param enum_hypothesis_list: enumerated hypothesis list

    :param enum_reference_list: enumerated reference list

    :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer())

    :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet)

    :return: sorted list of matched tuples, unmatched hypothesis list,

             unmatched reference list

    """
    exact_matches, enum_hypothesis_list, enum_reference_list = _match_enums(
        enum_hypothesis_list, enum_reference_list
    )

    stem_matches, enum_hypothesis_list, enum_reference_list = _enum_stem_match(
        enum_hypothesis_list, enum_reference_list, stemmer=stemmer
    )

    wns_matches, enum_hypothesis_list, enum_reference_list = _enum_wordnetsyn_match(
        enum_hypothesis_list, enum_reference_list, wordnet=wordnet
    )

    return (
        sorted(
            exact_matches + stem_matches + wns_matches, key=lambda wordpair: wordpair[0]
        ),
        enum_hypothesis_list,
        enum_reference_list,
    )


def align_words(

    hypothesis: Iterable[str],

    reference: Iterable[str],

    stemmer: StemmerI = PorterStemmer(),

    wordnet: WordNetCorpusReader = wordnet,

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int, str]]]:
    """

    Aligns/matches words in the hypothesis to reference by sequentially

    applying exact match, stemmed match and wordnet based synonym match.

    In case there are multiple matches the match which has the least number

    of crossing is chosen.



    :param hypothesis: pre-tokenized hypothesis

    :param reference: pre-tokenized reference

    :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer())

    :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet)

    :return: sorted list of matched tuples, unmatched hypothesis list, unmatched reference list

    """
    enum_hypothesis_list, enum_reference_list = _generate_enums(hypothesis, reference)
    return _enum_align_words(
        enum_hypothesis_list, enum_reference_list, stemmer=stemmer, wordnet=wordnet
    )


def _count_chunks(matches: List[Tuple[int, int]]) -> int:
    """

    Counts the fewest possible number of chunks such that matched unigrams

    of each chunk are adjacent to each other. This is used to calculate the

    fragmentation part of the metric.



    :param matches: list containing a mapping of matched words (output of align_words)

    :return: Number of chunks a sentence is divided into post alignment

    """
    i = 0
    chunks = 1
    while i < len(matches) - 1:
        if (matches[i + 1][0] == matches[i][0] + 1) and (
            matches[i + 1][1] == matches[i][1] + 1
        ):
            i += 1
            continue
        i += 1
        chunks += 1
    return chunks


def single_meteor_score(

    reference: Iterable[str],

    hypothesis: Iterable[str],

    preprocess: Callable[[str], str] = str.lower,

    stemmer: StemmerI = PorterStemmer(),

    wordnet: WordNetCorpusReader = wordnet,

    alpha: float = 0.9,

    beta: float = 3.0,

    gamma: float = 0.5,

) -> float:
    """

    Calculates METEOR score for single hypothesis and reference as per

    "Meteor: An Automatic Metric for MT Evaluation with HighLevels of

    Correlation with Human Judgments" by Alon Lavie and Abhaya Agarwal,

    in Proceedings of ACL.

    https://www.cs.cmu.edu/~alavie/METEOR/pdf/Lavie-Agarwal-2007-METEOR.pdf





    >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures', 'that', 'the', 'military', 'always', 'obeys', 'the', 'commands', 'of', 'the', 'party']



    >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures', 'that', 'the', 'military', 'will', 'forever', 'heed', 'Party', 'commands']





    >>> round(single_meteor_score(reference1, hypothesis1),4)

    0.6944



        If there is no words match during the alignment the method returns the

        score as 0. We can safely  return a zero instead of raising a

        division by zero error as no match usually implies a bad translation.



    >>> round(single_meteor_score(['this', 'is', 'a', 'cat'], ['non', 'matching', 'hypothesis']),4)

    0.0



    :param reference: pre-tokenized reference

    :param hypothesis: pre-tokenized hypothesis

    :param preprocess: preprocessing function (default str.lower)

    :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer())

    :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet)

    :param alpha: parameter for controlling relative weights of precision and recall.

    :param beta: parameter for controlling shape of penalty as a

                 function of as a function of fragmentation.

    :param gamma: relative weight assigned to fragmentation penalty.

    :return: The sentence-level METEOR score.

    """
    enum_hypothesis, enum_reference = _generate_enums(
        hypothesis, reference, preprocess=preprocess
    )
    translation_length = len(enum_hypothesis)
    reference_length = len(enum_reference)
    matches, _, _ = _enum_align_words(
        enum_hypothesis, enum_reference, stemmer=stemmer, wordnet=wordnet
    )
    matches_count = len(matches)
    try:
        precision = float(matches_count) / translation_length
        recall = float(matches_count) / reference_length
        fmean = (precision * recall) / (alpha * precision + (1 - alpha) * recall)
        chunk_count = float(_count_chunks(matches))
        frag_frac = chunk_count / matches_count
    except ZeroDivisionError:
        return 0.0
    penalty = gamma * frag_frac**beta
    return (1 - penalty) * fmean


def meteor_score(

    references: Iterable[Iterable[str]],

    hypothesis: Iterable[str],

    preprocess: Callable[[str], str] = str.lower,

    stemmer: StemmerI = PorterStemmer(),

    wordnet: WordNetCorpusReader = wordnet,

    alpha: float = 0.9,

    beta: float = 3.0,

    gamma: float = 0.5,

) -> float:
    """

    Calculates METEOR score for hypothesis with multiple references as

    described in "Meteor: An Automatic Metric for MT Evaluation with

    HighLevels of Correlation with Human Judgments" by Alon Lavie and

    Abhaya Agarwal, in Proceedings of ACL.

    https://www.cs.cmu.edu/~alavie/METEOR/pdf/Lavie-Agarwal-2007-METEOR.pdf





    In case of multiple references the best score is chosen. This method

    iterates over single_meteor_score and picks the best pair among all

    the references for a given hypothesis



    >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures', 'that', 'the', 'military', 'always', 'obeys', 'the', 'commands', 'of', 'the', 'party']

    >>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops', 'forever', 'hearing', 'the', 'activity', 'guidebook', 'that', 'party', 'direct']



    >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures', 'that', 'the', 'military', 'will', 'forever', 'heed', 'Party', 'commands']

    >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which', 'guarantees', 'the', 'military', 'forces', 'always', 'being', 'under', 'the', 'command', 'of', 'the', 'Party']

    >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', 'army', 'always', 'to', 'heed', 'the', 'directions', 'of', 'the', 'party']



    >>> round(meteor_score([reference1, reference2, reference3], hypothesis1),4)

    0.6944



        If there is no words match during the alignment the method returns the

        score as 0. We can safely  return a zero instead of raising a

        division by zero error as no match usually implies a bad translation.



    >>> round(meteor_score([['this', 'is', 'a', 'cat']], ['non', 'matching', 'hypothesis']),4)

    0.0



    :param references: pre-tokenized reference sentences

    :param hypothesis: a pre-tokenized hypothesis sentence

    :param preprocess: preprocessing function (default str.lower)

    :param stemmer: nltk.stem.api.StemmerI object (default PorterStemmer())

    :param wordnet: a wordnet corpus reader object (default nltk.corpus.wordnet)

    :param alpha: parameter for controlling relative weights of precision and recall.

    :param beta: parameter for controlling shape of penalty as a function

                 of as a function of fragmentation.

    :param gamma: relative weight assigned to fragmentation penalty.

    :return: The sentence-level METEOR score.

    """
    return max(
        single_meteor_score(
            reference,
            hypothesis,
            preprocess=preprocess,
            stemmer=stemmer,
            wordnet=wordnet,
            alpha=alpha,
            beta=beta,
            gamma=gamma,
        )
        for reference in references
    )