File size: 9,676 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""

Tests for common methods of IBM translation models

"""

import unittest
from collections import defaultdict

from nltk.translate import AlignedSent, IBMModel
from nltk.translate.ibm_model import AlignmentInfo


class TestIBMModel(unittest.TestCase):
    __TEST_SRC_SENTENCE = ["j'", "aime", "bien", "jambon"]
    __TEST_TRG_SENTENCE = ["i", "love", "ham"]

    def test_vocabularies_are_initialized(self):
        parallel_corpora = [
            AlignedSent(["one", "two", "three", "four"], ["un", "deux", "trois"]),
            AlignedSent(["five", "one", "six"], ["quatre", "cinq", "six"]),
            AlignedSent([], ["sept"]),
        ]

        ibm_model = IBMModel(parallel_corpora)
        self.assertEqual(len(ibm_model.src_vocab), 8)
        self.assertEqual(len(ibm_model.trg_vocab), 6)

    def test_vocabularies_are_initialized_even_with_empty_corpora(self):
        parallel_corpora = []

        ibm_model = IBMModel(parallel_corpora)
        self.assertEqual(len(ibm_model.src_vocab), 1)  # addition of NULL token
        self.assertEqual(len(ibm_model.trg_vocab), 0)

    def test_best_model2_alignment(self):
        # arrange
        sentence_pair = AlignedSent(
            TestIBMModel.__TEST_TRG_SENTENCE, TestIBMModel.__TEST_SRC_SENTENCE
        )
        # None and 'bien' have zero fertility
        translation_table = {
            "i": {"j'": 0.9, "aime": 0.05, "bien": 0.02, "jambon": 0.03, None: 0},
            "love": {"j'": 0.05, "aime": 0.9, "bien": 0.01, "jambon": 0.01, None: 0.03},
            "ham": {"j'": 0, "aime": 0.01, "bien": 0, "jambon": 0.99, None: 0},
        }
        alignment_table = defaultdict(
            lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.2)))
        )

        ibm_model = IBMModel([])
        ibm_model.translation_table = translation_table
        ibm_model.alignment_table = alignment_table

        # act
        a_info = ibm_model.best_model2_alignment(sentence_pair)

        # assert
        self.assertEqual(a_info.alignment[1:], (1, 2, 4))  # 0th element unused
        self.assertEqual(a_info.cepts, [[], [1], [2], [], [3]])

    def test_best_model2_alignment_does_not_change_pegged_alignment(self):
        # arrange
        sentence_pair = AlignedSent(
            TestIBMModel.__TEST_TRG_SENTENCE, TestIBMModel.__TEST_SRC_SENTENCE
        )
        translation_table = {
            "i": {"j'": 0.9, "aime": 0.05, "bien": 0.02, "jambon": 0.03, None: 0},
            "love": {"j'": 0.05, "aime": 0.9, "bien": 0.01, "jambon": 0.01, None: 0.03},
            "ham": {"j'": 0, "aime": 0.01, "bien": 0, "jambon": 0.99, None: 0},
        }
        alignment_table = defaultdict(
            lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.2)))
        )

        ibm_model = IBMModel([])
        ibm_model.translation_table = translation_table
        ibm_model.alignment_table = alignment_table

        # act: force 'love' to be pegged to 'jambon'
        a_info = ibm_model.best_model2_alignment(sentence_pair, 2, 4)
        # assert
        self.assertEqual(a_info.alignment[1:], (1, 4, 4))
        self.assertEqual(a_info.cepts, [[], [1], [], [], [2, 3]])

    def test_best_model2_alignment_handles_fertile_words(self):
        # arrange
        sentence_pair = AlignedSent(
            ["i", "really", ",", "really", "love", "ham"],
            TestIBMModel.__TEST_SRC_SENTENCE,
        )
        # 'bien' produces 2 target words: 'really' and another 'really'
        translation_table = {
            "i": {"j'": 0.9, "aime": 0.05, "bien": 0.02, "jambon": 0.03, None: 0},
            "really": {"j'": 0, "aime": 0, "bien": 0.9, "jambon": 0.01, None: 0.09},
            ",": {"j'": 0, "aime": 0, "bien": 0.3, "jambon": 0, None: 0.7},
            "love": {"j'": 0.05, "aime": 0.9, "bien": 0.01, "jambon": 0.01, None: 0.03},
            "ham": {"j'": 0, "aime": 0.01, "bien": 0, "jambon": 0.99, None: 0},
        }
        alignment_table = defaultdict(
            lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.2)))
        )

        ibm_model = IBMModel([])
        ibm_model.translation_table = translation_table
        ibm_model.alignment_table = alignment_table

        # act
        a_info = ibm_model.best_model2_alignment(sentence_pair)

        # assert
        self.assertEqual(a_info.alignment[1:], (1, 3, 0, 3, 2, 4))
        self.assertEqual(a_info.cepts, [[3], [1], [5], [2, 4], [6]])

    def test_best_model2_alignment_handles_empty_src_sentence(self):
        # arrange
        sentence_pair = AlignedSent(TestIBMModel.__TEST_TRG_SENTENCE, [])
        ibm_model = IBMModel([])

        # act
        a_info = ibm_model.best_model2_alignment(sentence_pair)

        # assert
        self.assertEqual(a_info.alignment[1:], (0, 0, 0))
        self.assertEqual(a_info.cepts, [[1, 2, 3]])

    def test_best_model2_alignment_handles_empty_trg_sentence(self):
        # arrange
        sentence_pair = AlignedSent([], TestIBMModel.__TEST_SRC_SENTENCE)
        ibm_model = IBMModel([])

        # act
        a_info = ibm_model.best_model2_alignment(sentence_pair)

        # assert
        self.assertEqual(a_info.alignment[1:], ())
        self.assertEqual(a_info.cepts, [[], [], [], [], []])

    def test_neighboring_finds_neighbor_alignments(self):
        # arrange
        a_info = AlignmentInfo(
            (0, 3, 2),
            (None, "des", "œufs", "verts"),
            ("UNUSED", "green", "eggs"),
            [[], [], [2], [1]],
        )
        ibm_model = IBMModel([])

        # act
        neighbors = ibm_model.neighboring(a_info)

        # assert
        neighbor_alignments = set()
        for neighbor in neighbors:
            neighbor_alignments.add(neighbor.alignment)
        expected_alignments = {
            # moves
            (0, 0, 2),
            (0, 1, 2),
            (0, 2, 2),
            (0, 3, 0),
            (0, 3, 1),
            (0, 3, 3),
            # swaps
            (0, 2, 3),
            # original alignment
            (0, 3, 2),
        }
        self.assertEqual(neighbor_alignments, expected_alignments)

    def test_neighboring_sets_neighbor_alignment_info(self):
        # arrange
        a_info = AlignmentInfo(
            (0, 3, 2),
            (None, "des", "œufs", "verts"),
            ("UNUSED", "green", "eggs"),
            [[], [], [2], [1]],
        )
        ibm_model = IBMModel([])

        # act
        neighbors = ibm_model.neighboring(a_info)

        # assert: select a few particular alignments
        for neighbor in neighbors:
            if neighbor.alignment == (0, 2, 2):
                moved_alignment = neighbor
            elif neighbor.alignment == (0, 3, 2):
                swapped_alignment = neighbor

        self.assertEqual(moved_alignment.cepts, [[], [], [1, 2], []])
        self.assertEqual(swapped_alignment.cepts, [[], [], [2], [1]])

    def test_neighboring_returns_neighbors_with_pegged_alignment(self):
        # arrange
        a_info = AlignmentInfo(
            (0, 3, 2),
            (None, "des", "œufs", "verts"),
            ("UNUSED", "green", "eggs"),
            [[], [], [2], [1]],
        )
        ibm_model = IBMModel([])

        # act: peg 'eggs' to align with 'œufs'
        neighbors = ibm_model.neighboring(a_info, 2)

        # assert
        neighbor_alignments = set()
        for neighbor in neighbors:
            neighbor_alignments.add(neighbor.alignment)
        expected_alignments = {
            # moves
            (0, 0, 2),
            (0, 1, 2),
            (0, 2, 2),
            # no swaps
            # original alignment
            (0, 3, 2),
        }
        self.assertEqual(neighbor_alignments, expected_alignments)

    def test_hillclimb(self):
        # arrange
        initial_alignment = AlignmentInfo((0, 3, 2), None, None, None)

        def neighboring_mock(a, j):
            if a.alignment == (0, 3, 2):
                return {
                    AlignmentInfo((0, 2, 2), None, None, None),
                    AlignmentInfo((0, 1, 1), None, None, None),
                }
            elif a.alignment == (0, 2, 2):
                return {
                    AlignmentInfo((0, 3, 3), None, None, None),
                    AlignmentInfo((0, 4, 4), None, None, None),
                }
            return set()

        def prob_t_a_given_s_mock(a):
            prob_values = {
                (0, 3, 2): 0.5,
                (0, 2, 2): 0.6,
                (0, 1, 1): 0.4,
                (0, 3, 3): 0.6,
                (0, 4, 4): 0.7,
            }
            return prob_values.get(a.alignment, 0.01)

        ibm_model = IBMModel([])
        ibm_model.neighboring = neighboring_mock
        ibm_model.prob_t_a_given_s = prob_t_a_given_s_mock

        # act
        best_alignment = ibm_model.hillclimb(initial_alignment)

        # assert: hill climbing goes from (0, 3, 2) -> (0, 2, 2) -> (0, 4, 4)
        self.assertEqual(best_alignment.alignment, (0, 4, 4))

    def test_sample(self):
        # arrange
        sentence_pair = AlignedSent(
            TestIBMModel.__TEST_TRG_SENTENCE, TestIBMModel.__TEST_SRC_SENTENCE
        )
        ibm_model = IBMModel([])
        ibm_model.prob_t_a_given_s = lambda x: 0.001

        # act
        samples, best_alignment = ibm_model.sample(sentence_pair)

        # assert
        self.assertEqual(len(samples), 61)