File size: 12,506 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
.. Copyright (C) 2001-2023 NLTK Project
.. For license information, see LICENSE.TXT

==============
 Collocations
==============

Overview
~~~~~~~~

Collocations are expressions of multiple words which commonly co-occur. For
example, the top ten bigram collocations in Genesis are listed below, as
measured using Pointwise Mutual Information.

    >>> import nltk
    >>> from nltk.collocations import *
    >>> bigram_measures = nltk.collocations.BigramAssocMeasures()
    >>> trigram_measures = nltk.collocations.TrigramAssocMeasures()
    >>> fourgram_measures = nltk.collocations.QuadgramAssocMeasures()
    >>> finder = BigramCollocationFinder.from_words(
    ...     nltk.corpus.genesis.words('english-web.txt'))
    >>> finder.nbest(bigram_measures.pmi, 10)
    [('Allon', 'Bacuth'), ('Ashteroth', 'Karnaim'), ('Ben', 'Ammi'),
     ('En', 'Mishpat'), ('Jegar', 'Sahadutha'), ('Salt', 'Sea'),
     ('Whoever', 'sheds'), ('appoint', 'overseers'), ('aromatic', 'resin'),
     ('cutting', 'instrument')]

While these words are highly collocated, the expressions are also very
infrequent.  Therefore it is useful to apply filters, such as ignoring all
bigrams which occur less than three times in the corpus:

    >>> finder.apply_freq_filter(3)
    >>> finder.nbest(bigram_measures.pmi, 10)
    [('Beer', 'Lahai'), ('Lahai', 'Roi'), ('gray', 'hairs'),
     ('ewe', 'lambs'), ('Most', 'High'), ('many', 'colors'),
     ('burnt', 'offering'), ('Paddan', 'Aram'), ('east', 'wind'),
     ('living', 'creature')]

We may similarly find collocations among tagged words:

    >>> finder = BigramCollocationFinder.from_words(
    ...     nltk.corpus.brown.tagged_words('ca01', tagset='universal'))
    >>> finder.nbest(bigram_measures.pmi, 5)
    [(('1,119', 'NUM'), ('votes', 'NOUN')),
     (('1962', 'NUM'), ("governor's", 'NOUN')),
     (('637', 'NUM'), ('E.', 'NOUN')),
     (('Alpharetta', 'NOUN'), ('prison', 'NOUN')),
     (('Bar', 'NOUN'), ('Association', 'NOUN'))]

Or tags alone:

    >>> finder = BigramCollocationFinder.from_words(t for w, t in
    ...     nltk.corpus.brown.tagged_words('ca01', tagset='universal'))
    >>> finder.nbest(bigram_measures.pmi, 10)
    [('PRT', 'VERB'), ('PRON', 'VERB'), ('ADP', 'DET'), ('.', 'PRON'), ('DET', 'ADJ'),
     ('CONJ', 'PRON'), ('ADP', 'NUM'), ('NUM', '.'), ('ADV', 'ADV'), ('VERB', 'ADV')]

Or spanning intervening words:

    >>> finder = BigramCollocationFinder.from_words(
    ...     nltk.corpus.genesis.words('english-web.txt'),
    ...     window_size = 20)
    >>> finder.apply_freq_filter(2)
    >>> ignored_words = nltk.corpus.stopwords.words('english')
    >>> finder.apply_word_filter(lambda w: len(w) < 3 or w.lower() in ignored_words)
    >>> finder.nbest(bigram_measures.likelihood_ratio, 10)
    [('chief', 'chief'), ('became', 'father'), ('years', 'became'),
     ('hundred', 'years'), ('lived', 'became'), ('king', 'king'),
     ('lived', 'years'), ('became', 'became'), ('chief', 'chiefs'),
     ('hundred', 'became')]

Finders
~~~~~~~

The collocations package provides collocation finders which by default
consider all ngrams in a text as candidate collocations:

    >>> text = "I do not like green eggs and ham, I do not like them Sam I am!"
    >>> tokens = nltk.wordpunct_tokenize(text)
    >>> finder = BigramCollocationFinder.from_words(tokens)
    >>> scored = finder.score_ngrams(bigram_measures.raw_freq)
    >>> sorted(bigram for bigram, score in scored)
    [(',', 'I'), ('I', 'am'), ('I', 'do'), ('Sam', 'I'), ('am', '!'),
     ('and', 'ham'), ('do', 'not'), ('eggs', 'and'), ('green', 'eggs'),
     ('ham', ','), ('like', 'green'), ('like', 'them'), ('not', 'like'),
     ('them', 'Sam')]

We could otherwise construct the collocation finder from manually-derived
FreqDists:

    >>> word_fd = nltk.FreqDist(tokens)
    >>> bigram_fd = nltk.FreqDist(nltk.bigrams(tokens))
    >>> finder = BigramCollocationFinder(word_fd, bigram_fd)
    >>> scored == finder.score_ngrams(bigram_measures.raw_freq)
    True

A similar interface is provided for trigrams:

    >>> finder = TrigramCollocationFinder.from_words(tokens)
    >>> scored = finder.score_ngrams(trigram_measures.raw_freq)
    >>> set(trigram for trigram, score in scored) == set(nltk.trigrams(tokens))
    True

We may want to select only the top n results:

    >>> sorted(finder.nbest(trigram_measures.raw_freq, 2))
    [('I', 'do', 'not'), ('do', 'not', 'like')]

Alternatively, we can select those above a minimum score value:

    >>> sorted(finder.above_score(trigram_measures.raw_freq,
    ...                           1.0 / len(tuple(nltk.trigrams(tokens)))))
    [('I', 'do', 'not'), ('do', 'not', 'like')]

Now spanning intervening words:

    >>> finder = TrigramCollocationFinder.from_words(tokens)
    >>> finder = TrigramCollocationFinder.from_words(tokens, window_size=4)
    >>> sorted(finder.nbest(trigram_measures.raw_freq, 4))
    [('I', 'do', 'like'), ('I', 'do', 'not'), ('I', 'not', 'like'), ('do', 'not', 'like')]

A closer look at the finder's ngram frequencies:



    >>> sorted(finder.ngram_fd.items(), key=lambda t: (-t[1], t[0]))[:10]

    [(('I', 'do', 'like'), 2), (('I', 'do', 'not'), 2), (('I', 'not', 'like'), 2),

     (('do', 'not', 'like'), 2), ((',', 'I', 'do'), 1), ((',', 'I', 'not'), 1),

     ((',', 'do', 'not'), 1), (('I', 'am', '!'), 1), (('Sam', 'I', '!'), 1),

     (('Sam', 'I', 'am'), 1)]



A similar interface is provided for fourgrams:



    >>> finder_4grams = QuadgramCollocationFinder.from_words(tokens)

    >>> scored_4grams = finder_4grams.score_ngrams(fourgram_measures.raw_freq)

    >>> set(fourgram for fourgram, score in scored_4grams) == set(nltk.ngrams(tokens, n=4))

    True



Filtering candidates

~~~~~~~~~~~~~~~~~~~~



All the ngrams in a text are often too many to be useful when finding

collocations.  It is generally useful to remove some words or punctuation,

and to require a minimum frequency for candidate collocations.



Given our sample text above, if we remove all trigrams containing personal

pronouns from candidature, score_ngrams should return 6 less results, and

'do not like' will be the only candidate which occurs more than once:



    >>> finder = TrigramCollocationFinder.from_words(tokens)

    >>> len(finder.score_ngrams(trigram_measures.raw_freq))

    14

    >>> finder.apply_word_filter(lambda w: w in ('I', 'me'))

    >>> len(finder.score_ngrams(trigram_measures.raw_freq))

    8

    >>> sorted(finder.above_score(trigram_measures.raw_freq,

    ...                           1.0 / len(tuple(nltk.trigrams(tokens)))))

    [('do', 'not', 'like')]



Sometimes a filter is a function on the whole ngram, rather than each word,

such as if we may permit 'and' to appear in the middle of a trigram, but

not on either edge:



    >>> finder.apply_ngram_filter(lambda w1, w2, w3: 'and' in (w1, w3))

    >>> len(finder.score_ngrams(trigram_measures.raw_freq))

    6



Finally, it is often important to remove low frequency candidates, as we

lack sufficient evidence about their significance as collocations:



    >>> finder.apply_freq_filter(2)

    >>> len(finder.score_ngrams(trigram_measures.raw_freq))

    1



Association measures

~~~~~~~~~~~~~~~~~~~~



A number of measures are available to score collocations or other associations.

The arguments to measure functions are marginals of a contingency table, in the

bigram case (n_ii, (n_ix, n_xi), n_xx)::



            w1    ~w1

         ------ ------

     w2 | n_ii | n_oi | = n_xi

         ------ ------

    ~w2 | n_io | n_oo |

         ------ ------

         = n_ix        TOTAL = n_xx



We test their calculation using some known values presented in Manning and

Schutze's text and other papers.

Student's t: examples from Manning and Schutze 5.3.2



   >>> print('%0.4f' % bigram_measures.student_t(8, (15828, 4675), 14307668))

   0.9999

   >>> print('%0.4f' % bigram_measures.student_t(20, (42, 20), 14307668))

   4.4721



Chi-square: examples from Manning and Schutze 5.3.3



   >>> print('%0.2f' % bigram_measures.chi_sq(8, (15828, 4675), 14307668))

   1.55

   >>> print('%0.0f' % bigram_measures.chi_sq(59, (67, 65), 571007))

   456400



Likelihood ratios: examples from Dunning, CL, 1993



   >>> print('%0.2f' % bigram_measures.likelihood_ratio(110, (2552, 221), 31777))

   270.72

   >>> print('%0.2f' % bigram_measures.likelihood_ratio(8, (13, 32), 31777))

   95.29



Pointwise Mutual Information: examples from Manning and Schutze 5.4



   >>> print('%0.2f' % bigram_measures.pmi(20, (42, 20), 14307668))

   18.38

   >>> print('%0.2f' % bigram_measures.pmi(20, (15019, 15629), 14307668))

   0.29



TODO: Find authoritative results for trigrams.



Using contingency table values

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



While frequency counts make marginals readily available for collocation

finding, it is common to find published contingency table values. The

collocations package therefore provides a wrapper, ContingencyMeasures, which

wraps an association measures class, providing association measures which

take contingency values as arguments, (n_ii, n_io, n_oi, n_oo) in the

bigram case.



   >>> from nltk.metrics import ContingencyMeasures

   >>> cont_bigram_measures = ContingencyMeasures(bigram_measures)

   >>> print('%0.2f' % cont_bigram_measures.likelihood_ratio(8, 5, 24, 31740))

   95.29

   >>> print('%0.2f' % cont_bigram_measures.chi_sq(8, 15820, 4667, 14287173))

   1.55



Ranking and correlation

~~~~~~~~~~~~~~~~~~~~~~~



It is useful to consider the results of finding collocations as a ranking, and

the rankings output using different association measures can be compared using

the Spearman correlation coefficient.



Ranks can be assigned to a sorted list of results trivially by assigning

strictly increasing ranks to each result:



    >>> from nltk.metrics.spearman import *

    >>> results_list = ['item1', 'item2', 'item3', 'item4', 'item5']

    >>> print(list(ranks_from_sequence(results_list)))

    [('item1', 0), ('item2', 1), ('item3', 2), ('item4', 3), ('item5', 4)]



If scores are available for each result, we may allow sufficiently similar

results (differing by no more than rank_gap) to be assigned the same rank:



    >>> results_scored = [('item1', 50.0), ('item2', 40.0), ('item3', 38.0),

    ...                   ('item4', 35.0), ('item5', 14.0)]

    >>> print(list(ranks_from_scores(results_scored, rank_gap=5)))

    [('item1', 0), ('item2', 1), ('item3', 1), ('item4', 1), ('item5', 4)]



The Spearman correlation coefficient gives a number from -1.0 to 1.0 comparing

two rankings.  A coefficient of 1.0 indicates identical rankings; -1.0 indicates

exact opposite rankings.



    >>> print('%0.1f' % spearman_correlation(

    ...         ranks_from_sequence(results_list),

    ...         ranks_from_sequence(results_list)))

    1.0

    >>> print('%0.1f' % spearman_correlation(

    ...         ranks_from_sequence(reversed(results_list)),

    ...         ranks_from_sequence(results_list)))

    -1.0

    >>> results_list2 = ['item2', 'item3', 'item1', 'item5', 'item4']

    >>> print('%0.1f' % spearman_correlation(

    ...        ranks_from_sequence(results_list),

    ...        ranks_from_sequence(results_list2)))

    0.6

    >>> print('%0.1f' % spearman_correlation(

    ...        ranks_from_sequence(reversed(results_list)),

    ...        ranks_from_sequence(results_list2)))

    -0.6



Keywords

~~~~~~~~



Bigram association metrics can also be used to perform keyword analysis. . For example, this finds the keywords

associated with the "romance" section of the Brown corpus as measured by likelihood ratio:



    >>> romance = nltk.FreqDist(w.lower() for w in nltk.corpus.brown.words(categories='romance') if w.isalpha())

    >>> freq = nltk.FreqDist(w.lower() for w in nltk.corpus.brown.words() if w.isalpha())



    >>> key = nltk.FreqDist()

    >>> for w in romance:

    ...     key[w] = bigram_measures.likelihood_ratio(romance[w], (freq[w], romance.N()), freq.N())



    >>> for k,v in key.most_common(10):

    ...     print(f'{k:10s} {v:9.3f}')

    she         1163.325

    i            995.961

    her          930.528

    you          513.149

    of           501.891

    is           463.386

    had          421.615

    he           411.000

    the          347.632

    said         300.811