File size: 59,174 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
# Natural Language Toolkit: Context Free Grammars
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Steven Bird <stevenbird1@gmail.com>
#         Edward Loper <edloper@gmail.com>
#         Jason Narad <jason.narad@gmail.com>
#         Peter Ljunglöf <peter.ljunglof@heatherleaf.se>
#         Tom Aarsen <>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
#

"""

Basic data classes for representing context free grammars.  A

"grammar" specifies which trees can represent the structure of a

given text.  Each of these trees is called a "parse tree" for the

text (or simply a "parse").  In a "context free" grammar, the set of

parse trees for any piece of a text can depend only on that piece, and

not on the rest of the text (i.e., the piece's context).  Context free

grammars are often used to find possible syntactic structures for

sentences.  In this context, the leaves of a parse tree are word

tokens; and the node values are phrasal categories, such as ``NP``

and ``VP``.



The ``CFG`` class is used to encode context free grammars.  Each

``CFG`` consists of a start symbol and a set of productions.

The "start symbol" specifies the root node value for parse trees.  For example,

the start symbol for syntactic parsing is usually ``S``.  Start

symbols are encoded using the ``Nonterminal`` class, which is discussed

below.



A Grammar's "productions" specify what parent-child relationships a parse

tree can contain.  Each production specifies that a particular

node can be the parent of a particular set of children.  For example,

the production ``<S> -> <NP> <VP>`` specifies that an ``S`` node can

be the parent of an ``NP`` node and a ``VP`` node.



Grammar productions are implemented by the ``Production`` class.

Each ``Production`` consists of a left hand side and a right hand

side.  The "left hand side" is a ``Nonterminal`` that specifies the

node type for a potential parent; and the "right hand side" is a list

that specifies allowable children for that parent.  This lists

consists of ``Nonterminals`` and text types: each ``Nonterminal``

indicates that the corresponding child may be a ``TreeToken`` with the

specified node type; and each text type indicates that the

corresponding child may be a ``Token`` with the with that type.



The ``Nonterminal`` class is used to distinguish node values from leaf

values.  This prevents the grammar from accidentally using a leaf

value (such as the English word "A") as the node of a subtree.  Within

a ``CFG``, all node values are wrapped in the ``Nonterminal``

class. Note, however, that the trees that are specified by the grammar do

*not* include these ``Nonterminal`` wrappers.



Grammars can also be given a more procedural interpretation.  According to

this interpretation, a Grammar specifies any tree structure *tree* that

can be produced by the following procedure:



| Set tree to the start symbol

| Repeat until tree contains no more nonterminal leaves:

|   Choose a production prod with whose left hand side

|     lhs is a nonterminal leaf of tree.

|   Replace the nonterminal leaf with a subtree, whose node

|     value is the value wrapped by the nonterminal lhs, and

|     whose children are the right hand side of prod.



The operation of replacing the left hand side (*lhs*) of a production

with the right hand side (*rhs*) in a tree (*tree*) is known as

"expanding" *lhs* to *rhs* in *tree*.

"""
import re
from functools import total_ordering

from nltk.featstruct import SLASH, TYPE, FeatDict, FeatStruct, FeatStructReader
from nltk.internals import raise_unorderable_types
from nltk.probability import ImmutableProbabilisticMixIn
from nltk.util import invert_graph, transitive_closure

#################################################################
# Nonterminal
#################################################################


@total_ordering
class Nonterminal:
    """

    A non-terminal symbol for a context free grammar.  ``Nonterminal``

    is a wrapper class for node values; it is used by ``Production``

    objects to distinguish node values from leaf values.

    The node value that is wrapped by a ``Nonterminal`` is known as its

    "symbol".  Symbols are typically strings representing phrasal

    categories (such as ``"NP"`` or ``"VP"``).  However, more complex

    symbol types are sometimes used (e.g., for lexicalized grammars).

    Since symbols are node values, they must be immutable and

    hashable.  Two ``Nonterminals`` are considered equal if their

    symbols are equal.



    :see: ``CFG``, ``Production``

    :type _symbol: any

    :ivar _symbol: The node value corresponding to this

        ``Nonterminal``.  This value must be immutable and hashable.

    """

    def __init__(self, symbol):
        """

        Construct a new non-terminal from the given symbol.



        :type symbol: any

        :param symbol: The node value corresponding to this

            ``Nonterminal``.  This value must be immutable and

            hashable.

        """
        self._symbol = symbol

    def symbol(self):
        """

        Return the node value corresponding to this ``Nonterminal``.



        :rtype: (any)

        """
        return self._symbol

    def __eq__(self, other):
        """

        Return True if this non-terminal is equal to ``other``.  In

        particular, return True if ``other`` is a ``Nonterminal``

        and this non-terminal's symbol is equal to ``other`` 's symbol.



        :rtype: bool

        """
        return type(self) == type(other) and self._symbol == other._symbol

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, Nonterminal):
            raise_unorderable_types("<", self, other)
        return self._symbol < other._symbol

    def __hash__(self):
        return hash(self._symbol)

    def __repr__(self):
        """

        Return a string representation for this ``Nonterminal``.



        :rtype: str

        """
        if isinstance(self._symbol, str):
            return "%s" % self._symbol
        else:
            return "%s" % repr(self._symbol)

    def __str__(self):
        """

        Return a string representation for this ``Nonterminal``.



        :rtype: str

        """
        if isinstance(self._symbol, str):
            return "%s" % self._symbol
        else:
            return "%s" % repr(self._symbol)

    def __div__(self, rhs):
        """

        Return a new nonterminal whose symbol is ``A/B``, where ``A`` is

        the symbol for this nonterminal, and ``B`` is the symbol for rhs.



        :param rhs: The nonterminal used to form the right hand side

            of the new nonterminal.

        :type rhs: Nonterminal

        :rtype: Nonterminal

        """
        return Nonterminal(f"{self._symbol}/{rhs._symbol}")

    def __truediv__(self, rhs):
        """

        Return a new nonterminal whose symbol is ``A/B``, where ``A`` is

        the symbol for this nonterminal, and ``B`` is the symbol for rhs.

        This function allows use of the slash ``/`` operator with

        the future import of division.



        :param rhs: The nonterminal used to form the right hand side

            of the new nonterminal.

        :type rhs: Nonterminal

        :rtype: Nonterminal

        """
        return self.__div__(rhs)


def nonterminals(symbols):
    """

    Given a string containing a list of symbol names, return a list of

    ``Nonterminals`` constructed from those symbols.



    :param symbols: The symbol name string.  This string can be

        delimited by either spaces or commas.

    :type symbols: str

    :return: A list of ``Nonterminals`` constructed from the symbol

        names given in ``symbols``.  The ``Nonterminals`` are sorted

        in the same order as the symbols names.

    :rtype: list(Nonterminal)

    """
    if "," in symbols:
        symbol_list = symbols.split(",")
    else:
        symbol_list = symbols.split()
    return [Nonterminal(s.strip()) for s in symbol_list]


class FeatStructNonterminal(FeatDict, Nonterminal):
    """A feature structure that's also a nonterminal.  It acts as its

    own symbol, and automatically freezes itself when hashed."""

    def __hash__(self):
        self.freeze()
        return FeatStruct.__hash__(self)

    def symbol(self):
        return self


def is_nonterminal(item):
    """

    :return: True if the item is a ``Nonterminal``.

    :rtype: bool

    """
    return isinstance(item, Nonterminal)


#################################################################
# Terminals
#################################################################


def is_terminal(item):
    """

    Return True if the item is a terminal, which currently is

    if it is hashable and not a ``Nonterminal``.



    :rtype: bool

    """
    return hasattr(item, "__hash__") and not isinstance(item, Nonterminal)


#################################################################
# Productions
#################################################################


@total_ordering
class Production:
    """

    A grammar production.  Each production maps a single symbol

    on the "left-hand side" to a sequence of symbols on the

    "right-hand side".  (In the case of context-free productions,

    the left-hand side must be a ``Nonterminal``, and the right-hand

    side is a sequence of terminals and ``Nonterminals``.)

    "terminals" can be any immutable hashable object that is

    not a ``Nonterminal``.  Typically, terminals are strings

    representing words, such as ``"dog"`` or ``"under"``.



    :see: ``CFG``

    :see: ``DependencyGrammar``

    :see: ``Nonterminal``

    :type _lhs: Nonterminal

    :ivar _lhs: The left-hand side of the production.

    :type _rhs: tuple(Nonterminal, terminal)

    :ivar _rhs: The right-hand side of the production.

    """

    def __init__(self, lhs, rhs):
        """

        Construct a new ``Production``.



        :param lhs: The left-hand side of the new ``Production``.

        :type lhs: Nonterminal

        :param rhs: The right-hand side of the new ``Production``.

        :type rhs: sequence(Nonterminal and terminal)

        """
        if isinstance(rhs, str):
            raise TypeError(
                "production right hand side should be a list, " "not a string"
            )
        self._lhs = lhs
        self._rhs = tuple(rhs)

    def lhs(self):
        """

        Return the left-hand side of this ``Production``.



        :rtype: Nonterminal

        """
        return self._lhs

    def rhs(self):
        """

        Return the right-hand side of this ``Production``.



        :rtype: sequence(Nonterminal and terminal)

        """
        return self._rhs

    def __len__(self):
        """

        Return the length of the right-hand side.



        :rtype: int

        """
        return len(self._rhs)

    def is_nonlexical(self):
        """

        Return True if the right-hand side only contains ``Nonterminals``



        :rtype: bool

        """
        return all(is_nonterminal(n) for n in self._rhs)

    def is_lexical(self):
        """

        Return True if the right-hand contain at least one terminal token.



        :rtype: bool

        """
        return not self.is_nonlexical()

    def __str__(self):
        """

        Return a verbose string representation of the ``Production``.



        :rtype: str

        """
        result = "%s -> " % repr(self._lhs)
        result += " ".join(repr(el) for el in self._rhs)
        return result

    def __repr__(self):
        """

        Return a concise string representation of the ``Production``.



        :rtype: str

        """
        return "%s" % self

    def __eq__(self, other):
        """

        Return True if this ``Production`` is equal to ``other``.



        :rtype: bool

        """
        return (
            type(self) == type(other)
            and self._lhs == other._lhs
            and self._rhs == other._rhs
        )

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, Production):
            raise_unorderable_types("<", self, other)
        return (self._lhs, self._rhs) < (other._lhs, other._rhs)

    def __hash__(self):
        """

        Return a hash value for the ``Production``.



        :rtype: int

        """
        return hash((self._lhs, self._rhs))


class DependencyProduction(Production):
    """

    A dependency grammar production.  Each production maps a single

    head word to an unordered list of one or more modifier words.

    """

    def __str__(self):
        """

        Return a verbose string representation of the ``DependencyProduction``.



        :rtype: str

        """
        result = f"'{self._lhs}' ->"
        for elt in self._rhs:
            result += f" '{elt}'"
        return result


class ProbabilisticProduction(Production, ImmutableProbabilisticMixIn):
    """

    A probabilistic context free grammar production.

    A PCFG ``ProbabilisticProduction`` is essentially just a ``Production`` that

    has an associated probability, which represents how likely it is that

    this production will be used.  In particular, the probability of a

    ``ProbabilisticProduction`` records the likelihood that its right-hand side is

    the correct instantiation for any given occurrence of its left-hand side.



    :see: ``Production``

    """

    def __init__(self, lhs, rhs, **prob):
        """

        Construct a new ``ProbabilisticProduction``.



        :param lhs: The left-hand side of the new ``ProbabilisticProduction``.

        :type lhs: Nonterminal

        :param rhs: The right-hand side of the new ``ProbabilisticProduction``.

        :type rhs: sequence(Nonterminal and terminal)

        :param prob: Probability parameters of the new ``ProbabilisticProduction``.

        """
        ImmutableProbabilisticMixIn.__init__(self, **prob)
        Production.__init__(self, lhs, rhs)

    def __str__(self):
        return super().__str__() + (
            " [1.0]" if (self.prob() == 1.0) else " [%g]" % self.prob()
        )

    def __eq__(self, other):
        return (
            type(self) == type(other)
            and self._lhs == other._lhs
            and self._rhs == other._rhs
            and self.prob() == other.prob()
        )

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash((self._lhs, self._rhs, self.prob()))


#################################################################
# Grammars
#################################################################


class CFG:
    """

    A context-free grammar.  A grammar consists of a start state and

    a set of productions.  The set of terminals and nonterminals is

    implicitly specified by the productions.



    If you need efficient key-based access to productions, you

    can use a subclass to implement it.

    """

    def __init__(self, start, productions, calculate_leftcorners=True):
        """

        Create a new context-free grammar, from the given start state

        and set of ``Production`` instances.



        :param start: The start symbol

        :type start: Nonterminal

        :param productions: The list of productions that defines the grammar

        :type productions: list(Production)

        :param calculate_leftcorners: False if we don't want to calculate the

            leftcorner relation. In that case, some optimized chart parsers won't work.

        :type calculate_leftcorners: bool

        """
        if not is_nonterminal(start):
            raise TypeError(
                "start should be a Nonterminal object,"
                " not a %s" % type(start).__name__
            )

        self._start = start
        self._productions = productions
        self._categories = {prod.lhs() for prod in productions}
        self._calculate_indexes()
        self._calculate_grammar_forms()
        if calculate_leftcorners:
            self._calculate_leftcorners()

    def _calculate_indexes(self):
        self._lhs_index = {}
        self._rhs_index = {}
        self._empty_index = {}
        self._lexical_index = {}
        for prod in self._productions:
            # Left hand side.
            lhs = prod._lhs
            if lhs not in self._lhs_index:
                self._lhs_index[lhs] = []
            self._lhs_index[lhs].append(prod)
            if prod._rhs:
                # First item in right hand side.
                rhs0 = prod._rhs[0]
                if rhs0 not in self._rhs_index:
                    self._rhs_index[rhs0] = []
                self._rhs_index[rhs0].append(prod)
            else:
                # The right hand side is empty.
                self._empty_index[prod.lhs()] = prod
            # Lexical tokens in the right hand side.
            for token in prod._rhs:
                if is_terminal(token):
                    self._lexical_index.setdefault(token, set()).add(prod)

    def _calculate_leftcorners(self):
        # Calculate leftcorner relations, for use in optimized parsing.
        self._immediate_leftcorner_categories = {cat: {cat} for cat in self._categories}
        self._immediate_leftcorner_words = {cat: set() for cat in self._categories}
        for prod in self.productions():
            if len(prod) > 0:
                cat, left = prod.lhs(), prod.rhs()[0]
                if is_nonterminal(left):
                    self._immediate_leftcorner_categories[cat].add(left)
                else:
                    self._immediate_leftcorner_words[cat].add(left)

        lc = transitive_closure(self._immediate_leftcorner_categories, reflexive=True)
        self._leftcorners = lc
        self._leftcorner_parents = invert_graph(lc)

        nr_leftcorner_categories = sum(
            map(len, self._immediate_leftcorner_categories.values())
        )
        nr_leftcorner_words = sum(map(len, self._immediate_leftcorner_words.values()))
        if nr_leftcorner_words > nr_leftcorner_categories > 10000:
            # If the grammar is big, the leftcorner-word dictionary will be too large.
            # In that case it is better to calculate the relation on demand.
            self._leftcorner_words = None
            return

        self._leftcorner_words = {}
        for cat in self._leftcorners:
            lefts = self._leftcorners[cat]
            lc = self._leftcorner_words[cat] = set()
            for left in lefts:
                lc.update(self._immediate_leftcorner_words.get(left, set()))

    @classmethod
    def fromstring(cls, input, encoding=None):
        """

        Return the grammar instance corresponding to the input string(s).



        :param input: a grammar, either in the form of a string or as a list of strings.

        """
        start, productions = read_grammar(
            input, standard_nonterm_parser, encoding=encoding
        )
        return cls(start, productions)

    def start(self):
        """

        Return the start symbol of the grammar



        :rtype: Nonterminal

        """
        return self._start

    # tricky to balance readability and efficiency here!
    # can't use set operations as they don't preserve ordering
    def productions(self, lhs=None, rhs=None, empty=False):
        """

        Return the grammar productions, filtered by the left-hand side

        or the first item in the right-hand side.



        :param lhs: Only return productions with the given left-hand side.

        :param rhs: Only return productions with the given first item

            in the right-hand side.

        :param empty: Only return productions with an empty right-hand side.

        :return: A list of productions matching the given constraints.

        :rtype: list(Production)

        """
        if rhs and empty:
            raise ValueError(
                "You cannot select empty and non-empty " "productions at the same time."
            )

        # no constraints so return everything
        if not lhs and not rhs:
            if not empty:
                return self._productions
            else:
                return self._empty_index.values()

        # only lhs specified so look up its index
        elif lhs and not rhs:
            if not empty:
                return self._lhs_index.get(lhs, [])
            elif lhs in self._empty_index:
                return [self._empty_index[lhs]]
            else:
                return []

        # only rhs specified so look up its index
        elif rhs and not lhs:
            return self._rhs_index.get(rhs, [])

        # intersect
        else:
            return [
                prod
                for prod in self._lhs_index.get(lhs, [])
                if prod in self._rhs_index.get(rhs, [])
            ]

    def leftcorners(self, cat):
        """

        Return the set of all nonterminals that the given nonterminal

        can start with, including itself.



        This is the reflexive, transitive closure of the immediate

        leftcorner relation:  (A > B)  iff  (A -> B beta)



        :param cat: the parent of the leftcorners

        :type cat: Nonterminal

        :return: the set of all leftcorners

        :rtype: set(Nonterminal)

        """
        return self._leftcorners.get(cat, {cat})

    def is_leftcorner(self, cat, left):
        """

        True if left is a leftcorner of cat, where left can be a

        terminal or a nonterminal.



        :param cat: the parent of the leftcorner

        :type cat: Nonterminal

        :param left: the suggested leftcorner

        :type left: Terminal or Nonterminal

        :rtype: bool

        """
        if is_nonterminal(left):
            return left in self.leftcorners(cat)
        elif self._leftcorner_words:
            return left in self._leftcorner_words.get(cat, set())
        else:
            return any(
                left in self._immediate_leftcorner_words.get(parent, set())
                for parent in self.leftcorners(cat)
            )

    def leftcorner_parents(self, cat):
        """

        Return the set of all nonterminals for which the given category

        is a left corner. This is the inverse of the leftcorner relation.



        :param cat: the suggested leftcorner

        :type cat: Nonterminal

        :return: the set of all parents to the leftcorner

        :rtype: set(Nonterminal)

        """
        return self._leftcorner_parents.get(cat, {cat})

    def check_coverage(self, tokens):
        """

        Check whether the grammar rules cover the given list of tokens.

        If not, then raise an exception.



        :type tokens: list(str)

        """
        missing = [tok for tok in tokens if not self._lexical_index.get(tok)]
        if missing:
            missing = ", ".join(f"{w!r}" for w in missing)
            raise ValueError(
                "Grammar does not cover some of the " "input words: %r." % missing
            )

    def _calculate_grammar_forms(self):
        """

        Pre-calculate of which form(s) the grammar is.

        """
        prods = self._productions
        self._is_lexical = all(p.is_lexical() for p in prods)
        self._is_nonlexical = all(p.is_nonlexical() for p in prods if len(p) != 1)
        self._min_len = min(len(p) for p in prods)
        self._max_len = max(len(p) for p in prods)
        self._all_unary_are_lexical = all(p.is_lexical() for p in prods if len(p) == 1)

    def is_lexical(self):
        """

        Return True if all productions are lexicalised.

        """
        return self._is_lexical

    def is_nonlexical(self):
        """

        Return True if all lexical rules are "preterminals", that is,

        unary rules which can be separated in a preprocessing step.



        This means that all productions are of the forms

        A -> B1 ... Bn (n>=0), or A -> "s".



        Note: is_lexical() and is_nonlexical() are not opposites.

        There are grammars which are neither, and grammars which are both.

        """
        return self._is_nonlexical

    def min_len(self):
        """

        Return the right-hand side length of the shortest grammar production.

        """
        return self._min_len

    def max_len(self):
        """

        Return the right-hand side length of the longest grammar production.

        """
        return self._max_len

    def is_nonempty(self):
        """

        Return True if there are no empty productions.

        """
        return self._min_len > 0

    def is_binarised(self):
        """

        Return True if all productions are at most binary.

        Note that there can still be empty and unary productions.

        """
        return self._max_len <= 2

    def is_flexible_chomsky_normal_form(self):
        """

        Return True if all productions are of the forms

        A -> B C, A -> B, or A -> "s".

        """
        return self.is_nonempty() and self.is_nonlexical() and self.is_binarised()

    def is_chomsky_normal_form(self):
        """

        Return True if the grammar is of Chomsky Normal Form, i.e. all productions

        are of the form A -> B C, or A -> "s".

        """
        return self.is_flexible_chomsky_normal_form() and self._all_unary_are_lexical

    def chomsky_normal_form(self, new_token_padding="@$@", flexible=False):
        """

        Returns a new Grammar that is in chomsky normal



        :param: new_token_padding

            Customise new rule formation during binarisation

        """
        if self.is_chomsky_normal_form():
            return self
        if self.productions(empty=True):
            raise ValueError(
                "Grammar has Empty rules. " "Cannot deal with them at the moment"
            )

        # check for mixed rules
        for rule in self.productions():
            if rule.is_lexical() and len(rule.rhs()) > 1:
                raise ValueError(
                    f"Cannot handled mixed rule {rule.lhs()} => {rule.rhs()}"
                )

        step1 = CFG.eliminate_start(self)
        step2 = CFG.binarize(step1, new_token_padding)
        if flexible:
            return step2
        step3 = CFG.remove_unitary_rules(step2)
        step4 = CFG(step3.start(), list(set(step3.productions())))
        return step4

    @classmethod
    def remove_unitary_rules(cls, grammar):
        """

        Remove nonlexical unitary rules and convert them to

        lexical

        """
        result = []
        unitary = []
        for rule in grammar.productions():
            if len(rule) == 1 and rule.is_nonlexical():
                unitary.append(rule)
            else:
                result.append(rule)

        while unitary:
            rule = unitary.pop(0)
            for item in grammar.productions(lhs=rule.rhs()[0]):
                new_rule = Production(rule.lhs(), item.rhs())
                if len(new_rule) != 1 or new_rule.is_lexical():
                    result.append(new_rule)
                else:
                    unitary.append(new_rule)

        n_grammar = CFG(grammar.start(), result)
        return n_grammar

    @classmethod
    def binarize(cls, grammar, padding="@$@"):
        """

        Convert all non-binary rules into binary by introducing

        new tokens.

        Example::



            Original:

                A => B C D

            After Conversion:

                A => B A@$@B

                A@$@B => C D

        """
        result = []

        for rule in grammar.productions():
            if len(rule.rhs()) > 2:
                # this rule needs to be broken down
                left_side = rule.lhs()
                for k in range(0, len(rule.rhs()) - 2):
                    tsym = rule.rhs()[k]
                    new_sym = Nonterminal(left_side.symbol() + padding + tsym.symbol())
                    new_production = Production(left_side, (tsym, new_sym))
                    left_side = new_sym
                    result.append(new_production)
                last_prd = Production(left_side, rule.rhs()[-2:])
                result.append(last_prd)
            else:
                result.append(rule)

        n_grammar = CFG(grammar.start(), result)
        return n_grammar

    @classmethod
    def eliminate_start(cls, grammar):
        """

        Eliminate start rule in case it appears on RHS

        Example: S -> S0 S1 and S0 -> S1 S

        Then another rule S0_Sigma -> S is added

        """
        start = grammar.start()
        result = []
        need_to_add = None
        for rule in grammar.productions():
            if start in rule.rhs():
                need_to_add = True
            result.append(rule)
        if need_to_add:
            start = Nonterminal("S0_SIGMA")
            result.append(Production(start, [grammar.start()]))
            n_grammar = CFG(start, result)
            return n_grammar
        return grammar

    def __repr__(self):
        return "<Grammar with %d productions>" % len(self._productions)

    def __str__(self):
        result = "Grammar with %d productions" % len(self._productions)
        result += " (start state = %r)" % self._start
        for production in self._productions:
            result += "\n    %s" % production
        return result


class FeatureGrammar(CFG):
    """

    A feature-based grammar.  This is equivalent to a

    ``CFG`` whose nonterminals are all

    ``FeatStructNonterminal``.



    A grammar consists of a start state and a set of

    productions.  The set of terminals and nonterminals

    is implicitly specified by the productions.

    """

    def __init__(self, start, productions):
        """

        Create a new feature-based grammar, from the given start

        state and set of ``Productions``.



        :param start: The start symbol

        :type start: FeatStructNonterminal

        :param productions: The list of productions that defines the grammar

        :type productions: list(Production)

        """
        CFG.__init__(self, start, productions)

    # The difference with CFG is that the productions are
    # indexed on the TYPE feature of the nonterminals.
    # This is calculated by the method _get_type_if_possible().

    def _calculate_indexes(self):
        self._lhs_index = {}
        self._rhs_index = {}
        self._empty_index = {}
        self._empty_productions = []
        self._lexical_index = {}
        for prod in self._productions:
            # Left hand side.
            lhs = self._get_type_if_possible(prod._lhs)
            if lhs not in self._lhs_index:
                self._lhs_index[lhs] = []
            self._lhs_index[lhs].append(prod)
            if prod._rhs:
                # First item in right hand side.
                rhs0 = self._get_type_if_possible(prod._rhs[0])
                if rhs0 not in self._rhs_index:
                    self._rhs_index[rhs0] = []
                self._rhs_index[rhs0].append(prod)
            else:
                # The right hand side is empty.
                if lhs not in self._empty_index:
                    self._empty_index[lhs] = []
                self._empty_index[lhs].append(prod)
                self._empty_productions.append(prod)
            # Lexical tokens in the right hand side.
            for token in prod._rhs:
                if is_terminal(token):
                    self._lexical_index.setdefault(token, set()).add(prod)

    @classmethod
    def fromstring(

        cls, input, features=None, logic_parser=None, fstruct_reader=None, encoding=None

    ):
        """

        Return a feature structure based grammar.



        :param input: a grammar, either in the form of a string or else

        as a list of strings.

        :param features: a tuple of features (default: SLASH, TYPE)

        :param logic_parser: a parser for lambda-expressions,

        by default, ``LogicParser()``

        :param fstruct_reader: a feature structure parser

        (only if features and logic_parser is None)

        """
        if features is None:
            features = (SLASH, TYPE)

        if fstruct_reader is None:
            fstruct_reader = FeatStructReader(
                features, FeatStructNonterminal, logic_parser=logic_parser
            )
        elif logic_parser is not None:
            raise Exception(
                "'logic_parser' and 'fstruct_reader' must " "not both be set"
            )

        start, productions = read_grammar(
            input, fstruct_reader.read_partial, encoding=encoding
        )
        return cls(start, productions)

    def productions(self, lhs=None, rhs=None, empty=False):
        """

        Return the grammar productions, filtered by the left-hand side

        or the first item in the right-hand side.



        :param lhs: Only return productions with the given left-hand side.

        :param rhs: Only return productions with the given first item

            in the right-hand side.

        :param empty: Only return productions with an empty right-hand side.

        :rtype: list(Production)

        """
        if rhs and empty:
            raise ValueError(
                "You cannot select empty and non-empty " "productions at the same time."
            )

        # no constraints so return everything
        if not lhs and not rhs:
            if empty:
                return self._empty_productions
            else:
                return self._productions

        # only lhs specified so look up its index
        elif lhs and not rhs:
            if empty:
                return self._empty_index.get(self._get_type_if_possible(lhs), [])
            else:
                return self._lhs_index.get(self._get_type_if_possible(lhs), [])

        # only rhs specified so look up its index
        elif rhs and not lhs:
            return self._rhs_index.get(self._get_type_if_possible(rhs), [])

        # intersect
        else:
            return [
                prod
                for prod in self._lhs_index.get(self._get_type_if_possible(lhs), [])
                if prod in self._rhs_index.get(self._get_type_if_possible(rhs), [])
            ]

    def leftcorners(self, cat):
        """

        Return the set of all words that the given category can start with.

        Also called the "first set" in compiler construction.

        """
        raise NotImplementedError("Not implemented yet")

    def leftcorner_parents(self, cat):
        """

        Return the set of all categories for which the given category

        is a left corner.

        """
        raise NotImplementedError("Not implemented yet")

    def _get_type_if_possible(self, item):
        """

        Helper function which returns the ``TYPE`` feature of the ``item``,

        if it exists, otherwise it returns the ``item`` itself

        """
        if isinstance(item, dict) and TYPE in item:
            return FeatureValueType(item[TYPE])
        else:
            return item


@total_ordering
class FeatureValueType:
    """

    A helper class for ``FeatureGrammars``, designed to be different

    from ordinary strings.  This is to stop the ``FeatStruct``

    ``FOO[]`` from being compare equal to the terminal "FOO".

    """

    def __init__(self, value):
        self._value = value

    def __repr__(self):
        return "<%s>" % self._value

    def __eq__(self, other):
        return type(self) == type(other) and self._value == other._value

    def __ne__(self, other):
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, FeatureValueType):
            raise_unorderable_types("<", self, other)
        return self._value < other._value

    def __hash__(self):
        return hash(self._value)


class DependencyGrammar:
    """

    A dependency grammar.  A DependencyGrammar consists of a set of

    productions.  Each production specifies a head/modifier relationship

    between a pair of words.

    """

    def __init__(self, productions):
        """

        Create a new dependency grammar, from the set of ``Productions``.



        :param productions: The list of productions that defines the grammar

        :type productions: list(Production)

        """
        self._productions = productions

    @classmethod
    def fromstring(cls, input):
        productions = []
        for linenum, line in enumerate(input.split("\n")):
            line = line.strip()
            if line.startswith("#") or line == "":
                continue
            try:
                productions += _read_dependency_production(line)
            except ValueError as e:
                raise ValueError(f"Unable to parse line {linenum}: {line}") from e
        if len(productions) == 0:
            raise ValueError("No productions found!")
        return cls(productions)

    def contains(self, head, mod):
        """

        :param head: A head word.

        :type head: str

        :param mod: A mod word, to test as a modifier of 'head'.

        :type mod: str



        :return: true if this ``DependencyGrammar`` contains a

            ``DependencyProduction`` mapping 'head' to 'mod'.

        :rtype: bool

        """
        for production in self._productions:
            for possibleMod in production._rhs:
                if production._lhs == head and possibleMod == mod:
                    return True
        return False

    def __contains__(self, head_mod):
        """

        Return True if this ``DependencyGrammar`` contains a

        ``DependencyProduction`` mapping 'head' to 'mod'.



        :param head_mod: A tuple of a head word and a mod word,

            to test as a modifier of 'head'.

        :type head: Tuple[str, str]

        :rtype: bool

        """
        try:
            head, mod = head_mod
        except ValueError as e:
            raise ValueError(
                "Must use a tuple of strings, e.g. `('price', 'of') in grammar`"
            ) from e
        return self.contains(head, mod)

    #   # should be rewritten, the set comp won't work in all comparisons
    # def contains_exactly(self, head, modlist):
    #   for production in self._productions:
    #       if(len(production._rhs) == len(modlist)):
    #           if(production._lhs == head):
    #               set1 = Set(production._rhs)
    #               set2 = Set(modlist)
    #               if(set1 == set2):
    #                   return True
    #   return False

    def __str__(self):
        """

        Return a verbose string representation of the ``DependencyGrammar``



        :rtype: str

        """
        str = "Dependency grammar with %d productions" % len(self._productions)
        for production in self._productions:
            str += "\n  %s" % production
        return str

    def __repr__(self):
        """

        Return a concise string representation of the ``DependencyGrammar``

        """
        return "Dependency grammar with %d productions" % len(self._productions)


class ProbabilisticDependencyGrammar:
    """ """

    def __init__(self, productions, events, tags):
        self._productions = productions
        self._events = events
        self._tags = tags

    def contains(self, head, mod):
        """

        Return True if this ``DependencyGrammar`` contains a

        ``DependencyProduction`` mapping 'head' to 'mod'.



        :param head: A head word.

        :type head: str

        :param mod: A mod word, to test as a modifier of 'head'.

        :type mod: str

        :rtype: bool

        """
        for production in self._productions:
            for possibleMod in production._rhs:
                if production._lhs == head and possibleMod == mod:
                    return True
        return False

    def __str__(self):
        """

        Return a verbose string representation of the ``ProbabilisticDependencyGrammar``



        :rtype: str

        """
        str = "Statistical dependency grammar with %d productions" % len(
            self._productions
        )
        for production in self._productions:
            str += "\n  %s" % production
        str += "\nEvents:"
        for event in self._events:
            str += "\n  %d:%s" % (self._events[event], event)
        str += "\nTags:"
        for tag_word in self._tags:
            str += f"\n {tag_word}:\t({self._tags[tag_word]})"
        return str

    def __repr__(self):
        """

        Return a concise string representation of the ``ProbabilisticDependencyGrammar``

        """
        return "Statistical Dependency grammar with %d productions" % len(
            self._productions
        )


class PCFG(CFG):
    """

    A probabilistic context-free grammar.  A PCFG consists of a

    start state and a set of productions with probabilities.  The set of

    terminals and nonterminals is implicitly specified by the productions.



    PCFG productions use the ``ProbabilisticProduction`` class.

    ``PCFGs`` impose the constraint that the set of productions with

    any given left-hand-side must have probabilities that sum to 1

    (allowing for a small margin of error).



    If you need efficient key-based access to productions, you can use

    a subclass to implement it.



    :type EPSILON: float

    :cvar EPSILON: The acceptable margin of error for checking that

        productions with a given left-hand side have probabilities

        that sum to 1.

    """

    EPSILON = 0.01

    def __init__(self, start, productions, calculate_leftcorners=True):
        """

        Create a new context-free grammar, from the given start state

        and set of ``ProbabilisticProductions``.



        :param start: The start symbol

        :type start: Nonterminal

        :param productions: The list of productions that defines the grammar

        :type productions: list(Production)

        :raise ValueError: if the set of productions with any left-hand-side

            do not have probabilities that sum to a value within

            EPSILON of 1.

        :param calculate_leftcorners: False if we don't want to calculate the

            leftcorner relation. In that case, some optimized chart parsers won't work.

        :type calculate_leftcorners: bool

        """
        CFG.__init__(self, start, productions, calculate_leftcorners)

        # Make sure that the probabilities sum to one.
        probs = {}
        for production in productions:
            probs[production.lhs()] = probs.get(production.lhs(), 0) + production.prob()
        for (lhs, p) in probs.items():
            if not ((1 - PCFG.EPSILON) < p < (1 + PCFG.EPSILON)):
                raise ValueError("Productions for %r do not sum to 1" % lhs)

    @classmethod
    def fromstring(cls, input, encoding=None):
        """

        Return a probabilistic context-free grammar corresponding to the

        input string(s).



        :param input: a grammar, either in the form of a string or else

             as a list of strings.

        """
        start, productions = read_grammar(
            input, standard_nonterm_parser, probabilistic=True, encoding=encoding
        )
        return cls(start, productions)


#################################################################
# Inducing Grammars
#################################################################

# Contributed by Nathan Bodenstab <bodenstab@cslu.ogi.edu>


def induce_pcfg(start, productions):
    r"""

    Induce a PCFG grammar from a list of productions.



    The probability of a production A -> B C in a PCFG is:



    |                count(A -> B C)

    |  P(B, C | A) = ---------------       where \* is any right hand side

    |                 count(A -> \*)



    :param start: The start symbol

    :type start: Nonterminal

    :param productions: The list of productions that defines the grammar

    :type productions: list(Production)

    """
    # Production count: the number of times a given production occurs
    pcount = {}

    # LHS-count: counts the number of times a given lhs occurs
    lcount = {}

    for prod in productions:
        lcount[prod.lhs()] = lcount.get(prod.lhs(), 0) + 1
        pcount[prod] = pcount.get(prod, 0) + 1

    prods = [
        ProbabilisticProduction(p.lhs(), p.rhs(), prob=pcount[p] / lcount[p.lhs()])
        for p in pcount
    ]
    return PCFG(start, prods)


#################################################################
# Helper functions for reading productions
#################################################################


def _read_cfg_production(input):
    """

    Return a list of context-free ``Productions``.

    """
    return _read_production(input, standard_nonterm_parser)


def _read_pcfg_production(input):
    """

    Return a list of PCFG ``ProbabilisticProductions``.

    """
    return _read_production(input, standard_nonterm_parser, probabilistic=True)


def _read_fcfg_production(input, fstruct_reader):
    """

    Return a list of feature-based ``Productions``.

    """
    return _read_production(input, fstruct_reader)


# Parsing generic grammars

_ARROW_RE = re.compile(r"\s* -> \s*", re.VERBOSE)
_PROBABILITY_RE = re.compile(r"( \[ [\d\.]+ \] ) \s*", re.VERBOSE)
_TERMINAL_RE = re.compile(r'( "[^"]*" | \'[^\']*\' ) \s*', re.VERBOSE)
_DISJUNCTION_RE = re.compile(r"\| \s*", re.VERBOSE)


def _read_production(line, nonterm_parser, probabilistic=False):
    """

    Parse a grammar rule, given as a string, and return

    a list of productions.

    """
    pos = 0

    # Parse the left-hand side.
    lhs, pos = nonterm_parser(line, pos)

    # Skip over the arrow.
    m = _ARROW_RE.match(line, pos)
    if not m:
        raise ValueError("Expected an arrow")
    pos = m.end()

    # Parse the right hand side.
    probabilities = [0.0]
    rhsides = [[]]
    while pos < len(line):
        # Probability.
        m = _PROBABILITY_RE.match(line, pos)
        if probabilistic and m:
            pos = m.end()
            probabilities[-1] = float(m.group(1)[1:-1])
            if probabilities[-1] > 1.0:
                raise ValueError(
                    "Production probability %f, "
                    "should not be greater than 1.0" % (probabilities[-1],)
                )

        # String -- add terminal.
        elif line[pos] in "'\"":
            m = _TERMINAL_RE.match(line, pos)
            if not m:
                raise ValueError("Unterminated string")
            rhsides[-1].append(m.group(1)[1:-1])
            pos = m.end()

        # Vertical bar -- start new rhside.
        elif line[pos] == "|":
            m = _DISJUNCTION_RE.match(line, pos)
            probabilities.append(0.0)
            rhsides.append([])
            pos = m.end()

        # Anything else -- nonterminal.
        else:
            nonterm, pos = nonterm_parser(line, pos)
            rhsides[-1].append(nonterm)

    if probabilistic:
        return [
            ProbabilisticProduction(lhs, rhs, prob=probability)
            for (rhs, probability) in zip(rhsides, probabilities)
        ]
    else:
        return [Production(lhs, rhs) for rhs in rhsides]


#################################################################
# Reading Phrase Structure Grammars
#################################################################


def read_grammar(input, nonterm_parser, probabilistic=False, encoding=None):
    """

    Return a pair consisting of a starting category and a list of

    ``Productions``.



    :param input: a grammar, either in the form of a string or else

        as a list of strings.

    :param nonterm_parser: a function for parsing nonterminals.

        It should take a ``(string, position)`` as argument and

        return a ``(nonterminal, position)`` as result.

    :param probabilistic: are the grammar rules probabilistic?

    :type probabilistic: bool

    :param encoding: the encoding of the grammar, if it is a binary string

    :type encoding: str

    """
    if encoding is not None:
        input = input.decode(encoding)
    if isinstance(input, str):
        lines = input.split("\n")
    else:
        lines = input

    start = None
    productions = []
    continue_line = ""
    for linenum, line in enumerate(lines):
        line = continue_line + line.strip()
        if line.startswith("#") or line == "":
            continue
        if line.endswith("\\"):
            continue_line = line[:-1].rstrip() + " "
            continue
        continue_line = ""
        try:
            if line[0] == "%":
                directive, args = line[1:].split(None, 1)
                if directive == "start":
                    start, pos = nonterm_parser(args, 0)
                    if pos != len(args):
                        raise ValueError("Bad argument to start directive")
                else:
                    raise ValueError("Bad directive")
            else:
                # expand out the disjunctions on the RHS
                productions += _read_production(line, nonterm_parser, probabilistic)
        except ValueError as e:
            raise ValueError(f"Unable to parse line {linenum + 1}: {line}\n{e}") from e

    if not productions:
        raise ValueError("No productions found!")
    if not start:
        start = productions[0].lhs()
    return (start, productions)


_STANDARD_NONTERM_RE = re.compile(r"( [\w/][\w/^<>-]* ) \s*", re.VERBOSE)


def standard_nonterm_parser(string, pos):
    m = _STANDARD_NONTERM_RE.match(string, pos)
    if not m:
        raise ValueError("Expected a nonterminal, found: " + string[pos:])
    return (Nonterminal(m.group(1)), m.end())


#################################################################
# Reading Dependency Grammars
#################################################################

_READ_DG_RE = re.compile(
    r"""^\s*                # leading whitespace

                              ('[^']+')\s*        # single-quoted lhs

                              (?:[-=]+>)\s*        # arrow

                              (?:(                 # rhs:

                                   "[^"]+"         # doubled-quoted terminal

                                 | '[^']+'         # single-quoted terminal

                                 | \|              # disjunction

                                 )

                                 \s*)              # trailing space

                                 *$""",  # zero or more copies
    re.VERBOSE,
)
_SPLIT_DG_RE = re.compile(r"""('[^']'|[-=]+>|"[^"]+"|'[^']+'|\|)""")


def _read_dependency_production(s):
    if not _READ_DG_RE.match(s):
        raise ValueError("Bad production string")
    pieces = _SPLIT_DG_RE.split(s)
    pieces = [p for i, p in enumerate(pieces) if i % 2 == 1]
    lhside = pieces[0].strip("'\"")
    rhsides = [[]]
    for piece in pieces[2:]:
        if piece == "|":
            rhsides.append([])
        else:
            rhsides[-1].append(piece.strip("'\""))
    return [DependencyProduction(lhside, rhside) for rhside in rhsides]


#################################################################
# Demonstration
#################################################################


def cfg_demo():
    """

    A demonstration showing how ``CFGs`` can be created and used.

    """

    from nltk import CFG, Production, nonterminals

    # Create some nonterminals
    S, NP, VP, PP = nonterminals("S, NP, VP, PP")
    N, V, P, Det = nonterminals("N, V, P, Det")
    VP_slash_NP = VP / NP

    print("Some nonterminals:", [S, NP, VP, PP, N, V, P, Det, VP / NP])
    print("    S.symbol() =>", repr(S.symbol()))
    print()

    print(Production(S, [NP]))

    # Create some Grammar Productions
    grammar = CFG.fromstring(
        """

      S -> NP VP

      PP -> P NP

      NP -> Det N | NP PP

      VP -> V NP | VP PP

      Det -> 'a' | 'the'

      N -> 'dog' | 'cat'

      V -> 'chased' | 'sat'

      P -> 'on' | 'in'

    """
    )

    print("A Grammar:", repr(grammar))
    print("    grammar.start()       =>", repr(grammar.start()))
    print("    grammar.productions() =>", end=" ")
    # Use string.replace(...) is to line-wrap the output.
    print(repr(grammar.productions()).replace(",", ",\n" + " " * 25))
    print()


def pcfg_demo():
    """

    A demonstration showing how a ``PCFG`` can be created and used.

    """

    from nltk import induce_pcfg, treetransforms
    from nltk.corpus import treebank
    from nltk.parse import pchart

    toy_pcfg1 = PCFG.fromstring(
        """

        S -> NP VP [1.0]

        NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15]

        Det -> 'the' [0.8] | 'my' [0.2]

        N -> 'man' [0.5] | 'telescope' [0.5]

        VP -> VP PP [0.1] | V NP [0.7] | V [0.2]

        V -> 'ate' [0.35] | 'saw' [0.65]

        PP -> P NP [1.0]

        P -> 'with' [0.61] | 'under' [0.39]

        """
    )

    toy_pcfg2 = PCFG.fromstring(
        """

        S    -> NP VP         [1.0]

        VP   -> V NP          [.59]

        VP   -> V             [.40]

        VP   -> VP PP         [.01]

        NP   -> Det N         [.41]

        NP   -> Name          [.28]

        NP   -> NP PP         [.31]

        PP   -> P NP          [1.0]

        V    -> 'saw'         [.21]

        V    -> 'ate'         [.51]

        V    -> 'ran'         [.28]

        N    -> 'boy'         [.11]

        N    -> 'cookie'      [.12]

        N    -> 'table'       [.13]

        N    -> 'telescope'   [.14]

        N    -> 'hill'        [.5]

        Name -> 'Jack'        [.52]

        Name -> 'Bob'         [.48]

        P    -> 'with'        [.61]

        P    -> 'under'       [.39]

        Det  -> 'the'         [.41]

        Det  -> 'a'           [.31]

        Det  -> 'my'          [.28]

        """
    )

    pcfg_prods = toy_pcfg1.productions()

    pcfg_prod = pcfg_prods[2]
    print("A PCFG production:", repr(pcfg_prod))
    print("    pcfg_prod.lhs()  =>", repr(pcfg_prod.lhs()))
    print("    pcfg_prod.rhs()  =>", repr(pcfg_prod.rhs()))
    print("    pcfg_prod.prob() =>", repr(pcfg_prod.prob()))
    print()

    grammar = toy_pcfg2
    print("A PCFG grammar:", repr(grammar))
    print("    grammar.start()       =>", repr(grammar.start()))
    print("    grammar.productions() =>", end=" ")
    # Use .replace(...) is to line-wrap the output.
    print(repr(grammar.productions()).replace(",", ",\n" + " " * 26))
    print()

    # extract productions from three trees and induce the PCFG
    print("Induce PCFG grammar from treebank data:")

    productions = []
    item = treebank._fileids[0]
    for tree in treebank.parsed_sents(item)[:3]:
        # perform optional tree transformations, e.g.:
        tree.collapse_unary(collapsePOS=False)
        tree.chomsky_normal_form(horzMarkov=2)

        productions += tree.productions()

    S = Nonterminal("S")
    grammar = induce_pcfg(S, productions)
    print(grammar)
    print()

    print("Parse sentence using induced grammar:")

    parser = pchart.InsideChartParser(grammar)
    parser.trace(3)

    # doesn't work as tokens are different:
    # sent = treebank.tokenized('wsj_0001.mrg')[0]

    sent = treebank.parsed_sents(item)[0].leaves()
    print(sent)
    for parse in parser.parse(sent):
        print(parse)


def fcfg_demo():
    import nltk.data

    g = nltk.data.load("grammars/book_grammars/feat0.fcfg")
    print(g)
    print()


def dg_demo():
    """

    A demonstration showing the creation and inspection of a

    ``DependencyGrammar``.

    """
    grammar = DependencyGrammar.fromstring(
        """

    'scratch' -> 'cats' | 'walls'

    'walls' -> 'the'

    'cats' -> 'the'

    """
    )
    print(grammar)


def sdg_demo():
    """

    A demonstration of how to read a string representation of

    a CoNLL format dependency tree.

    """
    from nltk.parse import DependencyGraph

    dg = DependencyGraph(
        """

    1   Ze                ze                Pron  Pron  per|3|evofmv|nom                 2   su      _  _

    2   had               heb               V     V     trans|ovt|1of2of3|ev             0   ROOT    _  _

    3   met               met               Prep  Prep  voor                             8   mod     _  _

    4   haar              haar              Pron  Pron  bez|3|ev|neut|attr               5   det     _  _

    5   moeder            moeder            N     N     soort|ev|neut                    3   obj1    _  _

    6   kunnen            kan               V     V     hulp|ott|1of2of3|mv              2   vc      _  _

    7   gaan              ga                V     V     hulp|inf                         6   vc      _  _

    8   winkelen          winkel            V     V     intrans|inf                      11  cnj     _  _

    9   ,                 ,                 Punc  Punc  komma                            8   punct   _  _

    10  zwemmen           zwem              V     V     intrans|inf                      11  cnj     _  _

    11  of                of                Conj  Conj  neven                            7   vc      _  _

    12  terrassen         terras            N     N     soort|mv|neut                    11  cnj     _  _

    13  .                 .                 Punc  Punc  punt                             12  punct   _  _

    """
    )
    tree = dg.tree()
    print(tree.pprint())


def demo():
    cfg_demo()
    pcfg_demo()
    fcfg_demo()
    dg_demo()
    sdg_demo()


if __name__ == "__main__":
    demo()

__all__ = [
    "Nonterminal",
    "nonterminals",
    "CFG",
    "Production",
    "PCFG",
    "ProbabilisticProduction",
    "DependencyGrammar",
    "DependencyProduction",
    "ProbabilisticDependencyGrammar",
    "induce_pcfg",
    "read_grammar",
]