File size: 15,562 Bytes
24c4def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import sys
from typing import Optional, Tuple

import cv2
import mmcv
import numpy as np
from mmengine.config import Config, DictAction
from mmengine.dataset import Compose
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar
from mmengine.visualization import Visualizer

from mmocr.registry import DATASETS, VISUALIZERS


# TODO: Support for printing the change in key of results
def parse_args():
    parser = argparse.ArgumentParser(description='Browse a dataset')
    parser.add_argument('config', help='Path to model or dataset config.')
    parser.add_argument(
        '--phase',
        '-p',
        default='train',
        type=str,
        help='Phase of dataset to visualize. Use "train", "test" or "val" if '
        "you just want to visualize the default split. It's also possible to "
        'be a dataset variable name, which might be useful when a dataset '
        'split has multiple variants in the config.')
    parser.add_argument(
        '--mode',
        '-m',
        default='transformed',
        type=str,
        choices=['original', 'transformed', 'pipeline'],
        help='Display mode: display original pictures or '
        'transformed pictures or comparison pictures. "original" '
        'only visualizes the original dataset & annotations; '
        '"transformed" shows the resulting images processed through all the '
        'transforms; "pipeline" shows all the intermediate images. '
        'Defaults to "transformed".')
    parser.add_argument(
        '--output-dir',
        '-o',
        default=None,
        type=str,
        help='If there is no display interface, you can save it.')
    parser.add_argument(
        '--task',
        '-t',
        default='auto',
        choices=['auto', 'textdet', 'textrecog'],
        type=str,
        help='Specify the task type of the dataset. If "auto", the task type '
        'will be inferred from the config. If the script is unable to infer '
        'the task type, you need to specify it manually. Defaults to "auto".')
    parser.add_argument('--not-show', default=False, action='store_true')
    parser.add_argument(
        '--show-number',
        '-n',
        type=int,
        default=sys.maxsize,
        help='number of images selected to visualize, '
        'must bigger than 0. if the number is bigger than length '
        'of dataset, show all the images in dataset; '
        'default "sys.maxsize", show all images in dataset')
    parser.add_argument(
        '--show-interval',
        '-i',
        type=float,
        default=3,
        help='the interval of show (s)')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    args = parser.parse_args()
    return args


def _get_adaptive_scale(img_shape: Tuple[int, int],
                        min_scale: float = 0.3,
                        max_scale: float = 3.0) -> float:
    """Get adaptive scale according to image shape.

    The target scale depends on the the short edge length of the image. If the
    short edge length equals 224, the output is 1.0. And output linear
    scales according the short edge length. You can also specify the minimum
    scale and the maximum scale to limit the linear scale.

    Args:
        img_shape (Tuple[int, int]): The shape of the canvas image.
        min_scale (int): The minimum scale. Defaults to 0.3.
        max_scale (int): The maximum scale. Defaults to 3.0.

    Returns:
        int: The adaptive scale.
    """
    short_edge_length = min(img_shape)
    scale = short_edge_length / 224.
    return min(max(scale, min_scale), max_scale)


def make_grid(imgs, infos):
    """Concat list of pictures into a single big picture, align height here."""
    visualizer = Visualizer.get_current_instance()
    names = [info['name'] for info in infos]
    ori_shapes = [
        info['dataset_sample'].metainfo['img_shape'] for info in infos
    ]
    max_height = int(max(img.shape[0] for img in imgs) * 1.1)
    min_width = min(img.shape[1] for img in imgs)
    horizontal_gap = min_width // 10
    img_scale = _get_adaptive_scale((max_height, min_width))

    texts = []
    text_positions = []
    start_x = 0
    for i, img in enumerate(imgs):
        pad_height = (max_height - img.shape[0]) // 2
        pad_width = horizontal_gap // 2
        # make border
        imgs[i] = cv2.copyMakeBorder(
            img,
            pad_height,
            max_height - img.shape[0] - pad_height + int(img_scale * 30 * 2),
            pad_width,
            pad_width,
            cv2.BORDER_CONSTANT,
            value=(255, 255, 255))
        texts.append(f'{"execution: "}{i}\n{names[i]}\n{ori_shapes[i]}')
        text_positions.append(
            [start_x + img.shape[1] // 2 + pad_width, max_height])
        start_x += img.shape[1] + horizontal_gap

    display_img = np.concatenate(imgs, axis=1)
    visualizer.set_image(display_img)
    img_scale = _get_adaptive_scale(display_img.shape[:2])
    visualizer.draw_texts(
        texts,
        positions=np.array(text_positions),
        font_sizes=img_scale * 7,
        colors='black',
        horizontal_alignments='center',
        font_families='monospace')
    return visualizer.get_image()


class InspectCompose(Compose):
    """Compose multiple transforms sequentially.

    And record "img" field of all results in one list.
    """

    def __init__(self, transforms, intermediate_imgs):
        super().__init__(transforms=transforms)
        self.intermediate_imgs = intermediate_imgs

    def __call__(self, data):
        self.ptransforms = [
            self.transforms[i] for i in range(len(self.transforms) - 1)
        ]
        for t in self.ptransforms:
            data = t(data)
            # Keep the same meta_keys in the PackTextDetInputs
            # or PackTextRecogInputs
            self.transforms[-1].meta_keys = [key for key in data]
            data_sample = self.transforms[-1](data)
            if data is None:
                return None
            if 'img' in data:
                self.intermediate_imgs.append({
                    'name':
                    t.__class__.__name__,
                    'dataset_sample':
                    data_sample['data_samples']
                })
        return data


def infer_dataset_task(task: str,
                       dataset_cfg: Config,
                       var_name: Optional[str] = None) -> str:
    """Try to infer the dataset's task type from the config and the variable
    name."""
    if task != 'auto':
        return task

    if dataset_cfg.pipeline is not None:
        if dataset_cfg.pipeline[-1].type == 'PackTextDetInputs':
            return 'textdet'
        elif dataset_cfg.pipeline[-1].type == 'PackTextRecogInputs':
            return 'textrecog'

    if var_name is not None:
        if 'det' in var_name:
            return 'textdet'
        elif 'rec' in var_name:
            return 'textrecog'

    raise ValueError(
        'Unable to infer the task type from dataset pipeline '
        'or variable name. Please specify the task type with --task argument '
        'explicitly.')


def obtain_dataset_cfg(cfg: Config, phase: str, mode: str, task: str) -> Tuple:
    """Obtain dataset and visualizer from config. Two modes are supported:
    1. Model Config Mode:
        In this mode, the input config should be a complete model config, which
        includes a dataset within pipeline and a visualizer.
    2. Dataset Config Mode:
        In this mode, the input config should be a complete dataset config,
        which only includes basic dataset information, and it may does not
        contain a visualizer and dataset pipeline.

    Examples:
        Typically, the model config files are stored in
        `configs/textdet/dbnet/xxx.py` and should look like:
        >>> train_dataloader = dict(
        >>>     batch_size=16,
        >>>     num_workers=8,
        >>>     persistent_workers=True,
        >>>     sampler=dict(type='DefaultSampler', shuffle=True),
        >>>     dataset=icdar2015_textdet_train)

        while the dataset config files are stored in
        `configs/textdet/_base_/datasets/xxx.py` and should be like:
        >>> icdar2015_textdet_train = dict(
        >>>     type='OCRDataset',
        >>>     data_root=ic15_det_data_root,
        >>>     ann_file='textdet_train.json',
        >>>     filter_cfg=dict(filter_empty_gt=True, min_size=32),
        >>>     pipeline=None)

    Args:
        cfg (Config): Config object.
        phase (str): The dataset phase to visualize.
        mode (str): Script mode.
        task (str): The current task type.

    Returns:
        Tuple: Tuple of (dataset, visualizer).
    """
    default_cfgs = dict(
        textdet=dict(
            visualizer=dict(
                type='TextDetLocalVisualizer',
                name='visualizer',
                vis_backends=[dict(type='LocalVisBackend')]),
            pipeline=[
                dict(
                    type='LoadImageFromFile',
                    color_type='color_ignore_orientation'),
                dict(
                    type='LoadOCRAnnotations',
                    with_polygon=True,
                    with_bbox=True,
                    with_label=True,
                ),
                dict(
                    type='PackTextDetInputs',
                    meta_keys=('img_path', 'ori_shape', 'img_shape'))
            ]),
        textrecog=dict(
            visualizer=dict(
                type='TextRecogLocalVisualizer',
                name='visualizer',
                vis_backends=[dict(type='LocalVisBackend')]),
            pipeline=[
                dict(type='LoadImageFromFile', ignore_empty=True, min_size=2),
                dict(type='LoadOCRAnnotations', with_text=True),
                dict(
                    type='PackTextRecogInputs',
                    meta_keys=('img_path', 'ori_shape', 'img_shape',
                               'valid_ratio'))
            ]),
    )

    # Model config mode
    dataloader_name = f'{phase}_dataloader'
    if dataloader_name in cfg:
        dataset = cfg.get(dataloader_name).dataset
        visualizer = cfg.visualizer

        if mode == 'original':
            default_cfg = default_cfgs[infer_dataset_task(task, dataset)]
            # Image can be stored in other methods, like LMDB,
            # which LoadImageFromFile can not handle
            if dataset.pipeline is not None:
                all_transform_types = [tfm['type'] for tfm in dataset.pipeline]
                if any([
                        tfm_type.startswith('LoadImageFrom')
                        for tfm_type in all_transform_types
                ]):
                    for tfm in dataset.pipeline:
                        if tfm['type'].startswith('LoadImageFrom'):
                            # update LoadImageFrom** transform
                            default_cfg['pipeline'][0] = tfm
            dataset.pipeline = default_cfg['pipeline']
        else:
            # In test_pipeline LoadOCRAnnotations is placed behind
            # other transforms. Transform will not be applied on
            # gt annotation.
            if phase == 'test':
                all_transform_types = [tfm['type'] for tfm in dataset.pipeline]
                load_ocr_ann_tfm_index = all_transform_types.index(
                    'LoadOCRAnnotations')
                load_ocr_ann_tfm = dataset.pipeline.pop(load_ocr_ann_tfm_index)
                dataset.pipeline.insert(1, load_ocr_ann_tfm)

        return dataset, visualizer

    # Dataset config mode

    for key in cfg.keys():
        if key.endswith(phase) and cfg[key]['type'].endswith('Dataset'):
            dataset = cfg[key]
            default_cfg = default_cfgs[infer_dataset_task(
                task, dataset, key.lower())]
            visualizer = default_cfg['visualizer']
            dataset['pipeline'] = default_cfg['pipeline'] if dataset[
                'pipeline'] is None else dataset['pipeline']

            return dataset, visualizer

    raise ValueError(
        f'Unable to find "{phase}_dataloader" or any dataset variable ending '
        f'with "{phase}". Please check your config file or --phase argument '
        'and try again. More details can be found in the docstring of '
        'obtain_dataset_cfg function. Or, you may visit the documentation via '
        'https://mmocr.readthedocs.io/en/dev-1.x/user_guides/useful_tools.html#dataset-visualization-tool'  # noqa: E501
    )


def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    init_default_scope(cfg.get('default_scope', 'mmocr'))

    dataset_cfg, visualizer_cfg = obtain_dataset_cfg(cfg, args.phase,
                                                     args.mode, args.task)
    dataset = DATASETS.build(dataset_cfg)
    visualizer = VISUALIZERS.build(visualizer_cfg)
    visualizer.dataset_meta = dataset.metainfo

    intermediate_imgs = []

    if dataset_cfg.type == 'ConcatDataset':
        for sub_dataset in dataset.datasets:
            sub_dataset.pipeline = InspectCompose(
                sub_dataset.pipeline.transforms, intermediate_imgs)
    else:
        dataset.pipeline = InspectCompose(dataset.pipeline.transforms,
                                          intermediate_imgs)

    # init visualization image number
    assert args.show_number > 0
    display_number = min(args.show_number, len(dataset))

    progress_bar = ProgressBar(display_number)
    # fetching items from dataset is a must for visualization
    for i, _ in zip(range(display_number), dataset):
        image_i = []
        result_i = [result['dataset_sample'] for result in intermediate_imgs]
        for k, datasample in enumerate(result_i):
            image = datasample.img
            if len(image.shape) == 3:
                image = image[..., [2, 1, 0]]  # bgr to rgb
            image_show = visualizer.add_datasample(
                'result',
                image,
                datasample,
                draw_pred=False,
                draw_gt=True,
                show=False)
            image_i.append(image_show)

        if args.mode == 'pipeline':
            image = make_grid(image_i, intermediate_imgs)
        else:
            image = image_i[-1]

        if hasattr(datasample, 'img_path'):
            filename = osp.basename(datasample.img_path)
        else:
            # some dataset have not image path
            filename = f'{i}.jpg'
        out_file = osp.join(args.output_dir,
                            filename) if args.output_dir is not None else None

        if out_file is not None:
            mmcv.imwrite(image[..., ::-1], out_file)

        if not args.not_show:
            visualizer.show(
                image, win_name=filename, wait_time=args.show_interval)

        intermediate_imgs.clear()
        progress_bar.update()


if __name__ == '__main__':
    main()