File size: 5,647 Bytes
0b4516f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os.path as osp
from functools import partial

import mmcv
import mmengine

from mmocr.utils import dump_ocr_data


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate training and validation set of COCO Text v2 ')
    parser.add_argument('root_path', help='Root dir path of COCO Text v2')
    parser.add_argument(
        '--nproc', default=1, type=int, help='Number of processes')
    parser.add_argument(
        '--preserve-vertical',
        help='Preserve samples containing vertical texts',
        action='store_true')
    args = parser.parse_args()
    return args


def process_img(args, src_image_root, dst_image_root, ignore_image_root,
                preserve_vertical, split):
    # Dirty hack for multi-processing
    img_idx, img_info, anns = args
    src_img = mmcv.imread(osp.join(src_image_root, img_info['file_name']))
    label = []
    for ann_idx, ann in enumerate(anns):
        text_label = ann['utf8_string']

        # Ignore illegible or non-English words
        if ann['language'] == 'not english':
            continue
        if ann['legibility'] == 'illegible':
            continue

        x, y, w, h = ann['bbox']
        x, y = max(0, math.floor(x)), max(0, math.floor(y))
        w, h = math.ceil(w), math.ceil(h)
        dst_img = src_img[y:y + h, x:x + w]
        dst_img_name = f'img_{img_idx}_{ann_idx}.jpg'

        if not preserve_vertical and h / w > 2 and split == 'train':
            dst_img_path = osp.join(ignore_image_root, dst_img_name)
            mmcv.imwrite(dst_img, dst_img_path)
            continue

        dst_img_path = osp.join(dst_image_root, dst_img_name)
        mmcv.imwrite(dst_img, dst_img_path)

        label.append({
            'file_name': dst_img_name,
            'anno_info': [{
                'text': text_label
            }]
        })

    return label


def convert_cocotext(root_path,
                     split,
                     preserve_vertical,
                     nproc,
                     img_start_idx=0):
    """Collect the annotation information and crop the images.

    The annotation format is as the following:
    {
        'anns':{
            '45346':{
                'mask': [468.9,286.7,468.9,295.2,493.0,295.8,493.0,287.2],
                'class': 'machine printed',
                'bbox': [468.9, 286.7, 24.1, 9.1], # x, y, w, h
                'image_id': 217925,
                'id': 45346,
                'language': 'english', # 'english' or 'not english'
                'area': 206.06,
                'utf8_string': 'New',
                'legibility': 'legible', # 'legible' or 'illegible'
            },
            ...
        }
        'imgs':{
            '540965':{
                'id': 540965,
                'set': 'train', # 'train' or 'val'
                'width': 640,
                'height': 360,
                'file_name': 'COCO_train2014_000000540965.jpg'
            },
            ...
        }
        'imgToAnns':{
            '540965': [],
            '260932': [63993, 63994, 63995, 63996, 63997, 63998, 63999],
            ...
        }
    }

    Args:
        root_path (str): Root path to the dataset
        split (str): Dataset split, which should be 'train' or 'val'
        preserve_vertical (bool): Whether to preserve vertical texts
        nproc (int): Number of processes
        img_start_idx (int): Index of start image

    Returns:
        img_info (dict): The dict of the img and annotation information
    """

    annotation_path = osp.join(root_path, 'annotations/cocotext.v2.json')
    if not osp.exists(annotation_path):
        raise Exception(
            f'{annotation_path} not exists, please check and try again.')

    annotation = mmengine.load(annotation_path)
    # outputs
    dst_label_file = osp.join(root_path, f'{split}_label.json')
    dst_image_root = osp.join(root_path, 'crops', split)
    ignore_image_root = osp.join(root_path, 'ignores', split)
    src_image_root = osp.join(root_path, 'imgs')
    mmengine.mkdir_or_exist(dst_image_root)
    mmengine.mkdir_or_exist(ignore_image_root)

    process_img_with_path = partial(
        process_img,
        src_image_root=src_image_root,
        dst_image_root=dst_image_root,
        ignore_image_root=ignore_image_root,
        preserve_vertical=preserve_vertical,
        split=split)
    tasks = []
    for img_idx, img_info in enumerate(annotation['imgs'].values()):
        if img_info['set'] == split:
            ann_ids = annotation['imgToAnns'][str(img_info['id'])]
            anns = [annotation['anns'][str(ann_id)] for ann_id in ann_ids]
            tasks.append((img_idx + img_start_idx, img_info, anns))
    labels_list = mmengine.track_parallel_progress(
        process_img_with_path, tasks, keep_order=True, nproc=nproc)
    final_labels = []
    for label_list in labels_list:
        final_labels += label_list
    dump_ocr_data(final_labels, dst_label_file, 'textrecog')

    return len(annotation['imgs'])


def main():
    args = parse_args()
    root_path = args.root_path
    print('Processing training set...')
    num_train_imgs = convert_cocotext(
        root_path=root_path,
        split='train',
        preserve_vertical=args.preserve_vertical,
        nproc=args.nproc)
    print('Processing validation set...')
    convert_cocotext(
        root_path=root_path,
        split='val',
        preserve_vertical=args.preserve_vertical,
        nproc=args.nproc,
        img_start_idx=num_train_imgs)
    print('Finish')


if __name__ == '__main__':
    main()