Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 3,885 Bytes
			
			| 0b4516f | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | # Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import unittest
import cv2
import numpy as np
import torch
from mmengine.structures import InstanceData
from mmocr.structures import TextDetDataSample
from mmocr.utils import bbox2poly
from mmocr.visualization import TextDetLocalVisualizer
class TestTextDetLocalVisualizer(unittest.TestCase):
    def setUp(self):
        h, w = 12, 10
        self.image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8')
        # gt_instances
        data_sample = TextDetDataSample()
        gt_instances_data = dict(
            bboxes=self._rand_bboxes(5, h, w),
            polygons=self._rand_polys(5, h, w),
            labels=torch.zeros(5, ))
        gt_instances = InstanceData(**gt_instances_data)
        data_sample.gt_instances = gt_instances
        pred_instances_data = dict(
            bboxes=self._rand_bboxes(5, h, w),
            polygons=self._rand_polys(5, h, w),
            labels=torch.zeros(5, ),
            scores=torch.rand((5, )))
        pred_instances = InstanceData(**pred_instances_data)
        data_sample.pred_instances = pred_instances
        self.data_sample = data_sample
    def test_text_det_local_visualizer(self):
        for with_poly in [True, False]:
            for with_bbox in [True, False]:
                vis_cfg = dict(with_poly=with_poly, with_bbox=with_bbox)
                self._test_add_datasample(vis_cfg=vis_cfg)
    @staticmethod
    def _rand_bboxes(num_boxes, h, w):
        cx, cy, bw, bh = torch.rand(num_boxes, 4).T
        tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w).unsqueeze(0)
        tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h).unsqueeze(0)
        br_x = ((cx * w) + (w * bw / 2)).clamp(0, w).unsqueeze(0)
        br_y = ((cy * h) + (h * bh / 2)).clamp(0, h).unsqueeze(0)
        bboxes = torch.cat([tl_x, tl_y, br_x, br_y], dim=0).T
        return bboxes
    def _rand_polys(self, num_bboxes, h, w):
        bboxes = self._rand_bboxes(num_bboxes, h, w)
        bboxes = bboxes.tolist()
        polys = [bbox2poly(bbox) for bbox in bboxes]
        return polys
    def _test_add_datasample(self, vis_cfg):
        image = self.image
        h, w, c = image.shape
        det_local_visualizer = TextDetLocalVisualizer(**vis_cfg)
        det_local_visualizer.add_datasample('image', image, self.data_sample)
        with tempfile.TemporaryDirectory() as tmp_dir:
            # test out
            out_file = osp.join(tmp_dir, 'out_file.jpg')
            det_local_visualizer.add_datasample(
                'image',
                image,
                self.data_sample,
                out_file=out_file,
                draw_gt=False,
                draw_pred=False)
            self._assert_image_and_shape(out_file, (h, w, c))
            det_local_visualizer.add_datasample(
                'image', image, self.data_sample, out_file=out_file)
            self._assert_image_and_shape(out_file, (h, w * 2, c))
            det_local_visualizer.add_datasample(
                'image',
                image,
                self.data_sample,
                draw_gt=False,
                out_file=out_file)
            self._assert_image_and_shape(out_file, (h, w, c))
            det_local_visualizer.add_datasample(
                'image',
                image,
                self.data_sample,
                draw_pred=False,
                out_file=out_file)
            self._assert_image_and_shape(out_file, (h, w, c))
            det_local_visualizer.add_datasample(
                'image', image, None, out_file=out_file)
            self._assert_image_and_shape(out_file, (h, w, c))
    def _assert_image_and_shape(self, out_file, out_shape):
        self.assertTrue(osp.exists(out_file))
        drawn_img = cv2.imread(out_file)
        self.assertTrue(drawn_img.shape == out_shape)
 |