File size: 3,885 Bytes
0b4516f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
import unittest

import cv2
import numpy as np
import torch
from mmengine.structures import InstanceData

from mmocr.structures import TextDetDataSample
from mmocr.utils import bbox2poly
from mmocr.visualization import TextDetLocalVisualizer


class TestTextDetLocalVisualizer(unittest.TestCase):

    def setUp(self):
        h, w = 12, 10
        self.image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8')

        # gt_instances
        data_sample = TextDetDataSample()
        gt_instances_data = dict(
            bboxes=self._rand_bboxes(5, h, w),
            polygons=self._rand_polys(5, h, w),
            labels=torch.zeros(5, ))
        gt_instances = InstanceData(**gt_instances_data)
        data_sample.gt_instances = gt_instances

        pred_instances_data = dict(
            bboxes=self._rand_bboxes(5, h, w),
            polygons=self._rand_polys(5, h, w),
            labels=torch.zeros(5, ),
            scores=torch.rand((5, )))
        pred_instances = InstanceData(**pred_instances_data)
        data_sample.pred_instances = pred_instances
        self.data_sample = data_sample

    def test_text_det_local_visualizer(self):
        for with_poly in [True, False]:
            for with_bbox in [True, False]:
                vis_cfg = dict(with_poly=with_poly, with_bbox=with_bbox)
                self._test_add_datasample(vis_cfg=vis_cfg)

    @staticmethod
    def _rand_bboxes(num_boxes, h, w):
        cx, cy, bw, bh = torch.rand(num_boxes, 4).T

        tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w).unsqueeze(0)
        tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h).unsqueeze(0)
        br_x = ((cx * w) + (w * bw / 2)).clamp(0, w).unsqueeze(0)
        br_y = ((cy * h) + (h * bh / 2)).clamp(0, h).unsqueeze(0)

        bboxes = torch.cat([tl_x, tl_y, br_x, br_y], dim=0).T

        return bboxes

    def _rand_polys(self, num_bboxes, h, w):
        bboxes = self._rand_bboxes(num_bboxes, h, w)
        bboxes = bboxes.tolist()
        polys = [bbox2poly(bbox) for bbox in bboxes]
        return polys

    def _test_add_datasample(self, vis_cfg):
        image = self.image
        h, w, c = image.shape

        det_local_visualizer = TextDetLocalVisualizer(**vis_cfg)
        det_local_visualizer.add_datasample('image', image, self.data_sample)

        with tempfile.TemporaryDirectory() as tmp_dir:
            # test out
            out_file = osp.join(tmp_dir, 'out_file.jpg')
            det_local_visualizer.add_datasample(
                'image',
                image,
                self.data_sample,
                out_file=out_file,
                draw_gt=False,
                draw_pred=False)
            self._assert_image_and_shape(out_file, (h, w, c))

            det_local_visualizer.add_datasample(
                'image', image, self.data_sample, out_file=out_file)
            self._assert_image_and_shape(out_file, (h, w * 2, c))

            det_local_visualizer.add_datasample(
                'image',
                image,
                self.data_sample,
                draw_gt=False,
                out_file=out_file)
            self._assert_image_and_shape(out_file, (h, w, c))

            det_local_visualizer.add_datasample(
                'image',
                image,
                self.data_sample,
                draw_pred=False,
                out_file=out_file)
            self._assert_image_and_shape(out_file, (h, w, c))

            det_local_visualizer.add_datasample(
                'image', image, None, out_file=out_file)
            self._assert_image_and_shape(out_file, (h, w, c))

    def _assert_image_and_shape(self, out_file, out_shape):
        self.assertTrue(osp.exists(out_file))
        drawn_img = cv2.imread(out_file)
        self.assertTrue(drawn_img.shape == out_shape)