sunit333's picture
Upload 63 files
d08dd00 verified
ALBERT
======
*************** Changes from Original Implementation ***************
1. Remove sentence order in `run_pretraining.py`
2. Modify `_is_start_piece_sp` function in `create_pretraining_data.py` to account for non-English languages.
***************New March 28, 2020 ***************
Add a colab [tutorial](https://github.com/google-research/albert/blob/master/albert_glue_fine_tuning_tutorial.ipynb) to run fine-tuning for GLUE datasets.
***************New January 7, 2020 ***************
v2 TF-Hub models should be working now with TF 1.15, as we removed the
native Einsum op from the graph. See updated TF-Hub links below.
***************New December 30, 2019 ***************
Chinese models are released. We would like to thank [CLUE team ](https://github.com/CLUEbenchmark/CLUE) for providing the training data.
- [Base](https://storage.googleapis.com/albert_models/albert_base_zh.tar.gz)
- [Large](https://storage.googleapis.com/albert_models/albert_large_zh.tar.gz)
- [Xlarge](https://storage.googleapis.com/albert_models/albert_xlarge_zh.tar.gz)
- [Xxlarge](https://storage.googleapis.com/albert_models/albert_xxlarge_zh.tar.gz)
Version 2 of ALBERT models is released.
- Base: [[Tar file](https://storage.googleapis.com/albert_models/albert_base_v2.tar.gz)] [[TF-Hub](https://tfhub.dev/google/albert_base/3)]
- Large: [[Tar file](https://storage.googleapis.com/albert_models/albert_large_v2.tar.gz)] [[TF-Hub](https://tfhub.dev/google/albert_large/3)]
- Xlarge: [[Tar file](https://storage.googleapis.com/albert_models/albert_xlarge_v2.tar.gz)] [[TF-Hub](https://tfhub.dev/google/albert_xlarge/3)]
- Xxlarge: [[Tar file](https://storage.googleapis.com/albert_models/albert_xxlarge_v2.tar.gz)] [[TF-Hub](https://tfhub.dev/google/albert_xxlarge/3)]
In this version, we apply 'no dropout', 'additional training data' and 'long training time' strategies to all models. We train ALBERT-base for 10M steps and other models for 3M steps.
The result comparison to the v1 models is as followings:
| | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE |
|----------------|----------|----------|----------|----------|----------|----------|
|V2 |
|ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 |
|ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 |
|ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 |
|ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 |
|V1 |
|ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 |
|ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 |
|ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 |
|ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 |
The comparison shows that for ALBERT-base, ALBERT-large, and ALBERT-xlarge, v2 is much better than v1, indicating the importance of applying the above three strategies. On average, ALBERT-xxlarge is slightly worse than the v1, because of the following two reasons: 1) Training additional 1.5 M steps (the only difference between these two models is training for 1.5M steps and 3M steps) did not lead to significant performance improvement. 2) For v1, we did a little bit hyperparameter search among the parameters sets given by BERT, Roberta, and XLnet. For v2, we simply adopt the parameters from v1 except for RACE, where we use a learning rate of 1e-5 and 0 [ALBERT DR](https://arxiv.org/pdf/1909.11942.pdf) (dropout rate for ALBERT in finetuning). The original (v1) RACE hyperparameter will cause model divergence for v2 models. Given that the downstream tasks are sensitive to the fine-tuning hyperparameters, we should be careful about so called slight improvements.
ALBERT is "A Lite" version of BERT, a popular unsupervised language
representation learning algorithm. ALBERT uses parameter-reduction techniques
that allow for large-scale configurations, overcome previous memory limitations,
and achieve better behavior with respect to model degradation.
For a technical description of the algorithm, see our paper:
[ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942)
Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut
Release Notes
=============
- Initial release: 10/9/2019
Results
=======
Performance of ALBERT on GLUE benchmark results using a single-model setup on
dev:
| Models | MNLI | QNLI | QQP | RTE | SST | MRPC | CoLA | STS |
|-------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| BERT-large | 86.6 | 92.3 | 91.3 | 70.4 | 93.2 | 88.0 | 60.6 | 90.0 |
| XLNet-large | 89.8 | 93.9 | 91.8 | 83.8 | 95.6 | 89.2 | 63.6 | 91.8 |
| RoBERTa-large | 90.2 | 94.7 | **92.2** | 86.6 | 96.4 | **90.9** | 68.0 | 92.4 |
| ALBERT (1M) | 90.4 | 95.2 | 92.0 | 88.1 | 96.8 | 90.2 | 68.7 | 92.7 |
| ALBERT (1.5M) | **90.8** | **95.3** | **92.2** | **89.2** | **96.9** | **90.9** | **71.4** | **93.0** |
Performance of ALBERT-xxl on SQuaD and RACE benchmarks using a single-model
setup:
|Models | SQuAD1.1 dev | SQuAD2.0 dev | SQuAD2.0 test | RACE test (Middle/High) |
|--------------------------|---------------|---------------|---------------|-------------------------|
|BERT-large | 90.9/84.1 | 81.8/79.0 | 89.1/86.3 | 72.0 (76.6/70.1) |
|XLNet | 94.5/89.0 | 88.8/86.1 | 89.1/86.3 | 81.8 (85.5/80.2) |
|RoBERTa | 94.6/88.9 | 89.4/86.5 | 89.8/86.8 | 83.2 (86.5/81.3) |
|UPM | - | - | 89.9/87.2 | - |
|XLNet + SG-Net Verifier++ | - | - | 90.1/87.2 | - |
|ALBERT (1M) | 94.8/89.2 | 89.9/87.2 | - | 86.0 (88.2/85.1) |
|ALBERT (1.5M) | **94.8/89.3** | **90.2/87.4** | **90.9/88.1** | **86.5 (89.0/85.5)** |
Pre-trained Models
==================
TF-Hub modules are available:
- Base: [[Tar file](https://storage.googleapis.com/albert_models/albert_base_v1.tar.gz)] [[TF-Hub](https://tfhub.dev/google/albert_base/1)]
- Large: [[Tar file](https://storage.googleapis.com/albert_models/albert_large_v1.tar.gz)] [[TF-Hub](https://tfhub.dev/google/albert_large/1)]
- Xlarge: [[Tar file](https://storage.googleapis.com/albert_models/albert_xlarge_v1.tar.gz)] [[TF-Hub](https://tfhub.dev/google/albert_xlarge/1)]
- Xxlarge: [[Tar file](https://storage.googleapis.com/albert_models/albert_xxlarge_v1.tar.gz)] [[TF-Hub](https://tfhub.dev/google/albert_xxlarge/1)]
Example usage of the TF-Hub module in code:
```
tags = set()
if is_training:
tags.add("train")
albert_module = hub.Module("https://tfhub.dev/google/albert_base/1", tags=tags,
trainable=True)
albert_inputs = dict(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids)
albert_outputs = albert_module(
inputs=albert_inputs,
signature="tokens",
as_dict=True)
# If you want to use the token-level output, use
# albert_outputs["sequence_output"] instead.
output_layer = albert_outputs["pooled_output"]
```
Most of the fine-tuning scripts in this repository support TF-hub modules
via the `--albert_hub_module_handle` flag.
Pre-training Instructions
=========================
To pretrain ALBERT, use `run_pretraining.py`:
```
pip install -r albert/requirements.txt
python -m albert.run_pretraining \
--input_file=... \
--output_dir=... \
--init_checkpoint=... \
--albert_config_file=... \
--do_train \
--do_eval \
--train_batch_size=4096 \
--eval_batch_size=64 \
--max_seq_length=512 \
--max_predictions_per_seq=20 \
--optimizer='lamb' \
--learning_rate=.00176 \
--num_train_steps=125000 \
--num_warmup_steps=3125 \
--save_checkpoints_steps=5000
```
Fine-tuning on GLUE
===================
To fine-tune and evaluate a pretrained ALBERT on GLUE, please see the
convenience script `run_glue.sh`.
Lower-level use cases may want to use the `run_classifier.py` script directly.
The `run_classifier.py` script is used both for fine-tuning and evaluation of
ALBERT on individual GLUE benchmark tasks, such as MNLI:
```
pip install -r albert/requirements.txt
python -m albert.run_classifier \
--data_dir=... \
--output_dir=... \
--init_checkpoint=... \
--albert_config_file=... \
--spm_model_file=... \
--do_train \
--do_eval \
--do_predict \
--do_lower_case \
--max_seq_length=128 \
--optimizer=adamw \
--task_name=MNLI \
--warmup_step=1000 \
--learning_rate=3e-5 \
--train_step=10000 \
--save_checkpoints_steps=100 \
--train_batch_size=128
```
Good default flag values for each GLUE task can be found in `run_glue.sh`.
You can fine-tune the model starting from TF-Hub modules instead of raw
checkpoints by setting e.g.
`--albert_hub_module_handle=https://tfhub.dev/google/albert_base/1` instead
of `--init_checkpoint`.
You can find the spm_model_file in the tar files or under the assets folder of
the tf-hub module. The name of the model file is "30k-clean.model".
After evaluation, the script should report some output like this:
```
***** Eval results *****
global_step = ...
loss = ...
masked_lm_accuracy = ...
masked_lm_loss = ...
sentence_order_accuracy = ...
sentence_order_loss = ...
```
Fine-tuning on SQuAD
====================
To fine-tune and evaluate a pretrained model on SQuAD v1, use the
`run_squad_v1.py` script:
```
pip install -r albert/requirements.txt
python -m albert.run_squad_v1 \
--albert_config_file=... \
--output_dir=... \
--train_file=... \
--predict_file=... \
--train_feature_file=... \
--predict_feature_file=... \
--predict_feature_left_file=... \
--init_checkpoint=... \
--spm_model_file=... \
--do_lower_case \
--max_seq_length=384 \
--doc_stride=128 \
--max_query_length=64 \
--do_train=true \
--do_predict=true \
--train_batch_size=48 \
--predict_batch_size=8 \
--learning_rate=5e-5 \
--num_train_epochs=2.0 \
--warmup_proportion=.1 \
--save_checkpoints_steps=5000 \
--n_best_size=20 \
--max_answer_length=30
```
You can fine-tune the model starting from TF-Hub modules instead of raw
checkpoints by setting e.g.
`--albert_hub_module_handle=https://tfhub.dev/google/albert_base/1` instead
of `--init_checkpoint`.
For SQuAD v2, use the `run_squad_v2.py` script:
```
pip install -r albert/requirements.txt
python -m albert.run_squad_v2 \
--albert_config_file=... \
--output_dir=... \
--train_file=... \
--predict_file=... \
--train_feature_file=... \
--predict_feature_file=... \
--predict_feature_left_file=... \
--init_checkpoint=... \
--spm_model_file=... \
--do_lower_case \
--max_seq_length=384 \
--doc_stride=128 \
--max_query_length=64 \
--do_train \
--do_predict \
--train_batch_size=48 \
--predict_batch_size=8 \
--learning_rate=5e-5 \
--num_train_epochs=2.0 \
--warmup_proportion=.1 \
--save_checkpoints_steps=5000 \
--n_best_size=20 \
--max_answer_length=30
```
You can fine-tune the model starting from TF-Hub modules instead of raw
checkpoints by setting e.g.
`--albert_hub_module_handle=https://tfhub.dev/google/albert_base/1` instead
of `--init_checkpoint`.
Fine-tuning on RACE
===================
For RACE, use the `run_race.py` script:
```
pip install -r albert/requirements.txt
python -m albert.run_race \
--albert_config_file=... \
--output_dir=... \
--train_file=... \
--eval_file=... \
--data_dir=...\
--init_checkpoint=... \
--spm_model_file=... \
--max_seq_length=512 \
--max_qa_length=128 \
--do_train \
--do_eval \
--train_batch_size=32 \
--eval_batch_size=8 \
--learning_rate=1e-5 \
--train_step=12000 \
--warmup_step=1000 \
--save_checkpoints_steps=100
```
You can fine-tune the model starting from TF-Hub modules instead of raw
checkpoints by setting e.g.
`--albert_hub_module_handle=https://tfhub.dev/google/albert_base/1` instead
of `--init_checkpoint`.
SentencePiece
=============
Command for generating the sentence piece vocabulary:
```
spm_train \
--input all.txt --model_prefix=30k-clean --vocab_size=30000 --logtostderr
--pad_id=0 --unk_id=1 --eos_id=-1 --bos_id=-1
--control_symbols=[CLS],[SEP],[MASK]
--user_defined_symbols="(,),\",-,.,–,£,€"
--shuffle_input_sentence=true --input_sentence_size=10000000
--character_coverage=0.99995 --model_type=unigram
```