File size: 63,803 Bytes
d08dd00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
# coding=utf-8
# Copyright 2018 The Google AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
"""Utility functions for SQuAD v1.1/v2.0 datasets."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import collections
import json
import math
import re
import string
import sys
from albert import fine_tuning_utils
from albert import modeling
from albert import optimization
from albert import tokenization
import numpy as np
import six
from six.moves import map
from six.moves import range
import tensorflow.compat.v1 as tf
from tensorflow.contrib import data as contrib_data
from tensorflow.contrib import layers as contrib_layers
from tensorflow.contrib import tpu as contrib_tpu

_PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
    "PrelimPrediction",
    ["feature_index", "start_index", "end_index",
     "start_log_prob", "end_log_prob"])

_NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
    "NbestPrediction", ["text", "start_log_prob", "end_log_prob"])

RawResult = collections.namedtuple("RawResult",
                                   ["unique_id",
                                    "start_log_prob",
                                    "end_log_prob"])

RawResultV2 = collections.namedtuple(
    "RawResultV2",
    ["unique_id", "start_top_log_probs", "start_top_index",
     "end_top_log_probs", "end_top_index", "cls_logits"])


class SquadExample(object):
  """A single training/test example for simple sequence classification.

     For examples without an answer, the start and end position are -1.
  """

  def __init__(self,
               qas_id,
               question_text,
               paragraph_text,
               orig_answer_text=None,
               start_position=None,
               end_position=None,
               is_impossible=False):
    self.qas_id = qas_id
    self.question_text = question_text
    self.paragraph_text = paragraph_text
    self.orig_answer_text = orig_answer_text
    self.start_position = start_position
    self.end_position = end_position
    self.is_impossible = is_impossible

  def __str__(self):
    return self.__repr__()

  def __repr__(self):
    s = ""
    s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
    s += ", question_text: %s" % (
        tokenization.printable_text(self.question_text))
    s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text))
    if self.start_position:
      s += ", start_position: %d" % (self.start_position)
    if self.start_position:
      s += ", end_position: %d" % (self.end_position)
    if self.start_position:
      s += ", is_impossible: %r" % (self.is_impossible)
    return s


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               unique_id,
               example_index,
               doc_span_index,
               tok_start_to_orig_index,
               tok_end_to_orig_index,
               token_is_max_context,
               tokens,
               input_ids,
               input_mask,
               segment_ids,
               paragraph_len,
               p_mask=None,
               start_position=None,
               end_position=None,
               is_impossible=None):
    self.unique_id = unique_id
    self.example_index = example_index
    self.doc_span_index = doc_span_index
    self.tok_start_to_orig_index = tok_start_to_orig_index
    self.tok_end_to_orig_index = tok_end_to_orig_index
    self.token_is_max_context = token_is_max_context
    self.tokens = tokens
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.paragraph_len = paragraph_len
    self.start_position = start_position
    self.end_position = end_position
    self.is_impossible = is_impossible
    self.p_mask = p_mask


def read_squad_examples(input_file, is_training):
  """Read a SQuAD json file into a list of SquadExample."""
  with tf.gfile.Open(input_file, "r") as reader:
    input_data = json.load(reader)["data"]

  examples = []
  for entry in input_data:
    for paragraph in entry["paragraphs"]:
      paragraph_text = paragraph["context"]

      for qa in paragraph["qas"]:
        qas_id = qa["id"]
        question_text = qa["question"]
        start_position = None
        orig_answer_text = None
        is_impossible = False

        if is_training:
          is_impossible = qa.get("is_impossible", False)
          if (len(qa["answers"]) != 1) and (not is_impossible):
            raise ValueError(
                "For training, each question should have exactly 1 answer.")
          if not is_impossible:
            answer = qa["answers"][0]
            orig_answer_text = answer["text"]
            start_position = answer["answer_start"]
          else:
            start_position = -1
            orig_answer_text = ""

        example = SquadExample(
            qas_id=qas_id,
            question_text=question_text,
            paragraph_text=paragraph_text,
            orig_answer_text=orig_answer_text,
            start_position=start_position,
            is_impossible=is_impossible)
        examples.append(example)

  return examples


def _convert_index(index, pos, m=None, is_start=True):
  """Converts index."""
  if index[pos] is not None:
    return index[pos]
  n = len(index)
  rear = pos
  while rear < n - 1 and index[rear] is None:
    rear += 1
  front = pos
  while front > 0 and index[front] is None:
    front -= 1
  assert index[front] is not None or index[rear] is not None
  if index[front] is None:
    if index[rear] >= 1:
      if is_start:
        return 0
      else:
        return index[rear] - 1
    return index[rear]
  if index[rear] is None:
    if m is not None and index[front] < m - 1:
      if is_start:
        return index[front] + 1
      else:
        return m - 1
    return index[front]
  if is_start:
    if index[rear] > index[front] + 1:
      return index[front] + 1
    else:
      return index[rear]
  else:
    if index[rear] > index[front] + 1:
      return index[rear] - 1
    else:
      return index[front]


def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 doc_stride, max_query_length, is_training,
                                 output_fn, do_lower_case):
  """Loads a data file into a list of `InputBatch`s."""

  cnt_pos, cnt_neg = 0, 0
  unique_id = 1000000000
  max_n, max_m = 1024, 1024
  f = np.zeros((max_n, max_m), dtype=np.float32)

  for (example_index, example) in enumerate(examples):

    if example_index % 100 == 0:
      tf.logging.info("Converting {}/{} pos {} neg {}".format(
          example_index, len(examples), cnt_pos, cnt_neg))

    query_tokens = tokenization.encode_ids(
        tokenizer.sp_model,
        tokenization.preprocess_text(
            example.question_text, lower=do_lower_case))

    if len(query_tokens) > max_query_length:
      query_tokens = query_tokens[0:max_query_length]

    paragraph_text = example.paragraph_text
    para_tokens = tokenization.encode_pieces(
        tokenizer.sp_model,
        tokenization.preprocess_text(
            example.paragraph_text, lower=do_lower_case),
        return_unicode=False)

    chartok_to_tok_index = []
    tok_start_to_chartok_index = []
    tok_end_to_chartok_index = []
    char_cnt = 0
    para_tokens = [six.ensure_text(token, "utf-8") for token in para_tokens]
    for i, token in enumerate(para_tokens):
      new_token = six.ensure_text(token).replace(
          tokenization.SPIECE_UNDERLINE.decode("utf-8"), " ")
      chartok_to_tok_index.extend([i] * len(new_token))
      tok_start_to_chartok_index.append(char_cnt)
      char_cnt += len(new_token)
      tok_end_to_chartok_index.append(char_cnt - 1)

    tok_cat_text = "".join(para_tokens).replace(
        tokenization.SPIECE_UNDERLINE.decode("utf-8"), " ")
    n, m = len(paragraph_text), len(tok_cat_text)

    if n > max_n or m > max_m:
      max_n = max(n, max_n)
      max_m = max(m, max_m)
      f = np.zeros((max_n, max_m), dtype=np.float32)

    g = {}

    def _lcs_match(max_dist, n=n, m=m):
      """Longest-common-substring algorithm."""
      f.fill(0)
      g.clear()

      ### longest common sub sequence
      # f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j))
      for i in range(n):

        # note(zhiliny):
        # unlike standard LCS, this is specifically optimized for the setting
        # because the mismatch between sentence pieces and original text will
        # be small
        for j in range(i - max_dist, i + max_dist):
          if j >= m or j < 0: continue

          if i > 0:
            g[(i, j)] = 0
            f[i, j] = f[i - 1, j]

          if j > 0 and f[i, j - 1] > f[i, j]:
            g[(i, j)] = 1
            f[i, j] = f[i, j - 1]

          f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
          if (tokenization.preprocess_text(
              paragraph_text[i], lower=do_lower_case,
              remove_space=False) == tok_cat_text[j]
              and f_prev + 1 > f[i, j]):
            g[(i, j)] = 2
            f[i, j] = f_prev + 1

    max_dist = abs(n - m) + 5
    for _ in range(2):
      _lcs_match(max_dist)
      if f[n - 1, m - 1] > 0.8 * n: break
      max_dist *= 2

    orig_to_chartok_index = [None] * n
    chartok_to_orig_index = [None] * m
    i, j = n - 1, m - 1
    while i >= 0 and j >= 0:
      if (i, j) not in g: break
      if g[(i, j)] == 2:
        orig_to_chartok_index[i] = j
        chartok_to_orig_index[j] = i
        i, j = i - 1, j - 1
      elif g[(i, j)] == 1:
        j = j - 1
      else:
        i = i - 1

    if (all(v is None for v in orig_to_chartok_index) or
        f[n - 1, m - 1] < 0.8 * n):
      tf.logging.info("MISMATCH DETECTED!")
      continue

    tok_start_to_orig_index = []
    tok_end_to_orig_index = []
    for i in range(len(para_tokens)):
      start_chartok_pos = tok_start_to_chartok_index[i]
      end_chartok_pos = tok_end_to_chartok_index[i]
      start_orig_pos = _convert_index(chartok_to_orig_index, start_chartok_pos,
                                      n, is_start=True)
      end_orig_pos = _convert_index(chartok_to_orig_index, end_chartok_pos,
                                    n, is_start=False)

      tok_start_to_orig_index.append(start_orig_pos)
      tok_end_to_orig_index.append(end_orig_pos)

    if not is_training:
      tok_start_position = tok_end_position = None

    if is_training and example.is_impossible:
      tok_start_position = 0
      tok_end_position = 0

    if is_training and not example.is_impossible:
      start_position = example.start_position
      end_position = start_position + len(example.orig_answer_text) - 1

      start_chartok_pos = _convert_index(orig_to_chartok_index, start_position,
                                         is_start=True)
      tok_start_position = chartok_to_tok_index[start_chartok_pos]

      end_chartok_pos = _convert_index(orig_to_chartok_index, end_position,
                                       is_start=False)
      tok_end_position = chartok_to_tok_index[end_chartok_pos]
      assert tok_start_position <= tok_end_position

    def _piece_to_id(x):
      if six.PY2 and isinstance(x, six.text_type):
        x = six.ensure_binary(x, "utf-8")
      return tokenizer.sp_model.PieceToId(x)

    all_doc_tokens = list(map(_piece_to_id, para_tokens))

    # The -3 accounts for [CLS], [SEP] and [SEP]
    max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

    # We can have documents that are longer than the maximum sequence length.
    # To deal with this we do a sliding window approach, where we take chunks
    # of the up to our max length with a stride of `doc_stride`.
    _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
        "DocSpan", ["start", "length"])
    doc_spans = []
    start_offset = 0
    while start_offset < len(all_doc_tokens):
      length = len(all_doc_tokens) - start_offset
      if length > max_tokens_for_doc:
        length = max_tokens_for_doc
      doc_spans.append(_DocSpan(start=start_offset, length=length))
      if start_offset + length == len(all_doc_tokens):
        break
      start_offset += min(length, doc_stride)

    for (doc_span_index, doc_span) in enumerate(doc_spans):
      tokens = []
      token_is_max_context = {}
      segment_ids = []
      p_mask = []

      cur_tok_start_to_orig_index = []
      cur_tok_end_to_orig_index = []

      tokens.append(tokenizer.sp_model.PieceToId("[CLS]"))
      segment_ids.append(0)
      p_mask.append(0)
      for token in query_tokens:
        tokens.append(token)
        segment_ids.append(0)
        p_mask.append(1)
      tokens.append(tokenizer.sp_model.PieceToId("[SEP]"))
      segment_ids.append(0)
      p_mask.append(1)

      for i in range(doc_span.length):
        split_token_index = doc_span.start + i

        cur_tok_start_to_orig_index.append(
            tok_start_to_orig_index[split_token_index])
        cur_tok_end_to_orig_index.append(
            tok_end_to_orig_index[split_token_index])

        is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                               split_token_index)
        token_is_max_context[len(tokens)] = is_max_context
        tokens.append(all_doc_tokens[split_token_index])
        segment_ids.append(1)
        p_mask.append(0)
      tokens.append(tokenizer.sp_model.PieceToId("[SEP]"))
      segment_ids.append(1)
      p_mask.append(1)

      paragraph_len = len(tokens)
      input_ids = tokens

      # The mask has 1 for real tokens and 0 for padding tokens. Only real
      # tokens are attended to.
      input_mask = [1] * len(input_ids)

      # Zero-pad up to the sequence length.
      while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        p_mask.append(1)

      assert len(input_ids) == max_seq_length
      assert len(input_mask) == max_seq_length
      assert len(segment_ids) == max_seq_length

      span_is_impossible = example.is_impossible
      start_position = None
      end_position = None
      if is_training and not span_is_impossible:
        # For training, if our document chunk does not contain an annotation
        # we throw it out, since there is nothing to predict.
        doc_start = doc_span.start
        doc_end = doc_span.start + doc_span.length - 1
        out_of_span = False
        if not (tok_start_position >= doc_start and
                tok_end_position <= doc_end):
          out_of_span = True
        if out_of_span:
          # continue
          start_position = 0
          end_position = 0
          span_is_impossible = True
        else:
          doc_offset = len(query_tokens) + 2
          start_position = tok_start_position - doc_start + doc_offset
          end_position = tok_end_position - doc_start + doc_offset

      if is_training and span_is_impossible:
        start_position = 0
        end_position = 0

      if example_index < 20:
        tf.logging.info("*** Example ***")
        tf.logging.info("unique_id: %s" % (unique_id))
        tf.logging.info("example_index: %s" % (example_index))
        tf.logging.info("doc_span_index: %s" % (doc_span_index))
        tf.logging.info("tok_start_to_orig_index: %s" % " ".join(
            [str(x) for x in cur_tok_start_to_orig_index]))
        tf.logging.info("tok_end_to_orig_index: %s" % " ".join(
            [str(x) for x in cur_tok_end_to_orig_index]))
        tf.logging.info("token_is_max_context: %s" % " ".join([
            "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
        ]))
        tf.logging.info("input_pieces: %s" % " ".join(
            [tokenizer.sp_model.IdToPiece(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        tf.logging.info(
            "input_mask: %s" % " ".join([str(x) for x in input_mask]))
        tf.logging.info(
            "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))

        if is_training and span_is_impossible:
          tf.logging.info("impossible example span")

        if is_training and not span_is_impossible:
          pieces = [tokenizer.sp_model.IdToPiece(token) for token in
                    tokens[start_position: (end_position + 1)]]
          answer_text = tokenizer.sp_model.DecodePieces(pieces)
          tf.logging.info("start_position: %d" % (start_position))
          tf.logging.info("end_position: %d" % (end_position))
          tf.logging.info(
              "answer: %s" % (tokenization.printable_text(answer_text)))

          # note(zhiliny): With multi processing,
          # the example_index is actually the index within the current process
          # therefore we use example_index=None to avoid being used in the future.
          # The current code does not use example_index of training data.
      if is_training:
        feat_example_index = None
      else:
        feat_example_index = example_index

      feature = InputFeatures(
          unique_id=unique_id,
          example_index=feat_example_index,
          doc_span_index=doc_span_index,
          tok_start_to_orig_index=cur_tok_start_to_orig_index,
          tok_end_to_orig_index=cur_tok_end_to_orig_index,
          token_is_max_context=token_is_max_context,
          tokens=[tokenizer.sp_model.IdToPiece(x) for x in tokens],
          input_ids=input_ids,
          input_mask=input_mask,
          segment_ids=segment_ids,
          paragraph_len=paragraph_len,
          start_position=start_position,
          end_position=end_position,
          is_impossible=span_is_impossible,
          p_mask=p_mask)

      # Run callback
      output_fn(feature)

      unique_id += 1
      if span_is_impossible:
        cnt_neg += 1
      else:
        cnt_pos += 1

  tf.logging.info("Total number of instances: {} = pos {} neg {}".format(
      cnt_pos + cnt_neg, cnt_pos, cnt_neg))


def _check_is_max_context(doc_spans, cur_span_index, position):
  """Check if this is the 'max context' doc span for the token."""

  # Because of the sliding window approach taken to scoring documents, a single
  # token can appear in multiple documents. E.g.
  #  Doc: the man went to the store and bought a gallon of milk
  #  Span A: the man went to the
  #  Span B: to the store and bought
  #  Span C: and bought a gallon of
  #  ...
  #
  # Now the word 'bought' will have two scores from spans B and C. We only
  # want to consider the score with "maximum context", which we define as
  # the *minimum* of its left and right context (the *sum* of left and
  # right context will always be the same, of course).
  #
  # In the example the maximum context for 'bought' would be span C since
  # it has 1 left context and 3 right context, while span B has 4 left context
  # and 0 right context.
  best_score = None
  best_span_index = None
  for (span_index, doc_span) in enumerate(doc_spans):
    end = doc_span.start + doc_span.length - 1
    if position < doc_span.start:
      continue
    if position > end:
      continue
    num_left_context = position - doc_span.start
    num_right_context = end - position
    score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
    if best_score is None or score > best_score:
      best_score = score
      best_span_index = span_index

  return cur_span_index == best_span_index


def _get_best_indexes(logits, n_best_size):
  """Get the n-best logits from a list."""
  index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)

  best_indexes = []
  for i in range(len(index_and_score)):
    if i >= n_best_size:
      break
    best_indexes.append(index_and_score[i][0])
  return best_indexes


def _compute_softmax(scores):
  """Compute softmax probability over raw logits."""
  if not scores:
    return []

  max_score = None
  for score in scores:
    if max_score is None or score > max_score:
      max_score = score

  exp_scores = []
  total_sum = 0.0
  for score in scores:
    x = math.exp(score - max_score)
    exp_scores.append(x)
    total_sum += x

  probs = []
  for score in exp_scores:
    probs.append(score / total_sum)
  return probs


class FeatureWriter(object):
  """Writes InputFeature to TF example file."""

  def __init__(self, filename, is_training):
    self.filename = filename
    self.is_training = is_training
    self.num_features = 0
    self._writer = tf.python_io.TFRecordWriter(filename)

  def process_feature(self, feature):
    """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
    self.num_features += 1

    def create_int_feature(values):
      feature = tf.train.Feature(
          int64_list=tf.train.Int64List(value=list(values)))
      return feature

    features = collections.OrderedDict()
    features["unique_ids"] = create_int_feature([feature.unique_id])
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
    features["p_mask"] = create_int_feature(feature.p_mask)

    if self.is_training:
      features["start_positions"] = create_int_feature([feature.start_position])
      features["end_positions"] = create_int_feature([feature.end_position])
      impossible = 0
      if feature.is_impossible:
        impossible = 1
      features["is_impossible"] = create_int_feature([impossible])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    self._writer.write(tf_example.SerializeToString())

  def close(self):
    self._writer.close()


def input_fn_builder(input_file, seq_length, is_training,
                     drop_remainder, use_tpu, bsz, is_v2):
  """Creates an `input_fn` closure to be passed to TPUEstimator."""

  name_to_features = {
      "unique_ids": tf.FixedLenFeature([], tf.int64),
      "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
      "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
      "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
  }
  # p_mask is not required for SQuAD v1.1
  if is_v2:
    name_to_features["p_mask"] = tf.FixedLenFeature([seq_length], tf.int64)

  if is_training:
    name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64)
    name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64)
    name_to_features["is_impossible"] = tf.FixedLenFeature([], tf.int64)

  def _decode_record(record, name_to_features):
    """Decodes a record to a TensorFlow example."""
    example = tf.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in list(example.keys()):
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.to_int32(t)
      example[name] = t

    return example

  def input_fn(params):
    """The actual input function."""
    if use_tpu:
      batch_size = params["batch_size"]
    else:
      batch_size = bsz

    # For training, we want a lot of parallel reading and shuffling.
    # For eval, we want no shuffling and parallel reading doesn't matter.
    d = tf.data.TFRecordDataset(input_file)
    if is_training:
      d = d.repeat()
      d = d.shuffle(buffer_size=100)

    d = d.apply(
        contrib_data.map_and_batch(
            lambda record: _decode_record(record, name_to_features),
            batch_size=batch_size,
            drop_remainder=drop_remainder))

    return d

  return input_fn


def create_v1_model(albert_config, is_training, input_ids, input_mask,
                    segment_ids, use_one_hot_embeddings, use_einsum,
                    hub_module):
  """Creates a classification model."""
  (_, final_hidden) = fine_tuning_utils.create_albert(
      albert_config=albert_config,
      is_training=is_training,
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      use_one_hot_embeddings=use_one_hot_embeddings,
      use_einsum=use_einsum,
      hub_module=hub_module)

  final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
  batch_size = final_hidden_shape[0]
  seq_length = final_hidden_shape[1]
  hidden_size = final_hidden_shape[2]

  output_weights = tf.get_variable(
      "cls/squad/output_weights", [2, hidden_size],
      initializer=tf.truncated_normal_initializer(stddev=0.02))

  output_bias = tf.get_variable(
      "cls/squad/output_bias", [2], initializer=tf.zeros_initializer())

  final_hidden_matrix = tf.reshape(final_hidden,
                                   [batch_size * seq_length, hidden_size])
  logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
  logits = tf.nn.bias_add(logits, output_bias)

  logits = tf.reshape(logits, [batch_size, seq_length, 2])
  logits = tf.transpose(logits, [2, 0, 1])

  unstacked_logits = tf.unstack(logits, axis=0)

  (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])

  return (start_logits, end_logits)


def v1_model_fn_builder(albert_config, init_checkpoint, learning_rate,
                        num_train_steps, num_warmup_steps, use_tpu,
                        use_one_hot_embeddings, use_einsum, hub_module):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.logging.info("*** Features ***")
    for name in sorted(features.keys()):
      tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

    if "unique_ids" in features:
      unique_ids = features["unique_ids"]
    else:
      unique_ids = None
    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    (start_logits, end_logits) = create_v1_model(
        albert_config=albert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings,
        use_einsum=use_einsum,
        hub_module=hub_module)

    # Assign names to the logits so that we can refer to them as output tensors.
    start_logits = tf.identity(start_logits, name="start_logits")
    end_logits = tf.identity(end_logits, name="end_logits")

    tvars = tf.trainable_variables()

    initialized_variable_names = {}
    scaffold_fn = None
    if init_checkpoint:
      (assignment_map, initialized_variable_names
      ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
      if use_tpu:

        def tpu_scaffold():
          tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
          return tf.train.Scaffold()

        scaffold_fn = tpu_scaffold
      else:
        tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    tf.logging.info("**** Trainable Variables ****")
    for var in tvars:
      init_string = ""
      if var.name in initialized_variable_names:
        init_string = ", *INIT_FROM_CKPT*"
      tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                      init_string)

    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:
      seq_length = modeling.get_shape_list(input_ids)[1]

      def compute_loss(logits, positions):
        one_hot_positions = tf.one_hot(
            positions, depth=seq_length, dtype=tf.float32)
        log_probs = tf.nn.log_softmax(logits, axis=-1)
        loss = -tf.reduce_mean(
            tf.reduce_sum(one_hot_positions * log_probs, axis=-1))
        return loss

      start_positions = features["start_positions"]
      end_positions = features["end_positions"]

      start_loss = compute_loss(start_logits, start_positions)
      end_loss = compute_loss(end_logits, end_positions)

      total_loss = (start_loss + end_loss) / 2.0

      train_op = optimization.create_optimizer(
          total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

      output_spec = contrib_tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          train_op=train_op,
          scaffold_fn=scaffold_fn)
    elif mode == tf.estimator.ModeKeys.PREDICT:
      predictions = {
          "start_log_prob": start_logits,
          "end_log_prob": end_logits,
      }
      if unique_ids is not None:
        predictions["unique_ids"] = unique_ids
      output_spec = contrib_tpu.TPUEstimatorSpec(
          mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
    else:
      raise ValueError(
          "Only TRAIN and PREDICT modes are supported: %s" % (mode))
    return output_spec

  return model_fn


def accumulate_predictions_v1(result_dict, all_examples, all_features,
                              all_results, n_best_size, max_answer_length):
  """accumulate predictions for each positions in a dictionary."""
  example_index_to_features = collections.defaultdict(list)
  for feature in all_features:
    example_index_to_features[feature.example_index].append(feature)

  unique_id_to_result = {}
  for result in all_results:
    unique_id_to_result[result.unique_id] = result

  all_predictions = collections.OrderedDict()
  all_nbest_json = collections.OrderedDict()
  scores_diff_json = collections.OrderedDict()

  for (example_index, example) in enumerate(all_examples):
    if example_index not in result_dict:
      result_dict[example_index] = {}
    features = example_index_to_features[example_index]

    prelim_predictions = []
    min_null_feature_index = 0  # the paragraph slice with min mull score
    null_start_logit = 0  # the start logit at the slice with min null score
    null_end_logit = 0  # the end logit at the slice with min null score
    for (feature_index, feature) in enumerate(features):
      if feature.unique_id not in result_dict[example_index]:
        result_dict[example_index][feature.unique_id] = {}
      result = unique_id_to_result[feature.unique_id]
      start_indexes = _get_best_indexes(result.start_log_prob, n_best_size)
      end_indexes = _get_best_indexes(result.end_log_prob, n_best_size)
      for start_index in start_indexes:
        for end_index in end_indexes:
          doc_offset = feature.tokens.index("[SEP]") + 1
          # We could hypothetically create invalid predictions, e.g., predict
          # that the start of the span is in the question. We throw out all
          # invalid predictions.
          if start_index - doc_offset >= len(feature.tok_start_to_orig_index):
            continue
          if end_index - doc_offset >= len(feature.tok_end_to_orig_index):
            continue
          if not feature.token_is_max_context.get(start_index, False):
            continue
          if end_index < start_index:
            continue
          length = end_index - start_index + 1
          if length > max_answer_length:
            continue
          start_log_prob = result.start_log_prob[start_index]
          end_log_prob = result.end_log_prob[end_index]
          start_idx = start_index - doc_offset
          end_idx = end_index - doc_offset
          if (start_idx, end_idx) not in result_dict[example_index][feature.unique_id]:
            result_dict[example_index][feature.unique_id][(start_idx, end_idx)] = []
          result_dict[example_index][feature.unique_id][(start_idx, end_idx)].append((start_log_prob, end_log_prob))


def write_predictions_v1(result_dict, all_examples, all_features,
                         all_results, n_best_size, max_answer_length,
                         output_prediction_file, output_nbest_file):
  """Write final predictions to the json file and log-odds of null if needed."""
  tf.logging.info("Writing predictions to: %s" % (output_prediction_file))
  tf.logging.info("Writing nbest to: %s" % (output_nbest_file))

  example_index_to_features = collections.defaultdict(list)
  for feature in all_features:
    example_index_to_features[feature.example_index].append(feature)

  unique_id_to_result = {}
  for result in all_results:
    unique_id_to_result[result.unique_id] = result

  all_predictions = collections.OrderedDict()
  all_nbest_json = collections.OrderedDict()
  scores_diff_json = collections.OrderedDict()

  for (example_index, example) in enumerate(all_examples):
    features = example_index_to_features[example_index]

    prelim_predictions = []
    # keep track of the minimum score of null start+end of position 0
    score_null = 1000000  # large and positive
    min_null_feature_index = 0  # the paragraph slice with min mull score
    null_start_logit = 0  # the start logit at the slice with min null score
    null_end_logit = 0  # the end logit at the slice with min null score
    for (feature_index, feature) in enumerate(features):
      for ((start_idx, end_idx), logprobs) in \
        result_dict[example_index][feature.unique_id].items():
        start_log_prob = 0
        end_log_prob = 0
        for logprob in logprobs:
          start_log_prob += logprob[0]
          end_log_prob += logprob[1]
        prelim_predictions.append(
            _PrelimPrediction(
                feature_index=feature_index,
                start_index=start_idx,
                end_index=end_idx,
                start_log_prob=start_log_prob / len(logprobs),
                end_log_prob=end_log_prob / len(logprobs)))

    prelim_predictions = sorted(
        prelim_predictions,
        key=lambda x: (x.start_log_prob + x.end_log_prob),
        reverse=True)

    seen_predictions = {}
    nbest = []
    for pred in prelim_predictions:
      if len(nbest) >= n_best_size:
        break
      feature = features[pred.feature_index]
      if pred.start_index >= 0:  # this is a non-null prediction
        tok_start_to_orig_index = feature.tok_start_to_orig_index
        tok_end_to_orig_index = feature.tok_end_to_orig_index
        start_orig_pos = tok_start_to_orig_index[pred.start_index]
        end_orig_pos = tok_end_to_orig_index[pred.end_index]

        paragraph_text = example.paragraph_text
        final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip()
        if final_text in seen_predictions:
          continue

        seen_predictions[final_text] = True
      else:
        final_text = ""
        seen_predictions[final_text] = True

      nbest.append(
          _NbestPrediction(
              text=final_text,
              start_log_prob=pred.start_log_prob,
              end_log_prob=pred.end_log_prob))

    # In very rare edge cases we could have no valid predictions. So we
    # just create a nonce prediction in this case to avoid failure.
    if not nbest:
      nbest.append(
          _NbestPrediction(text="empty", start_log_prob=0.0, end_log_prob=0.0))

    assert len(nbest) >= 1

    total_scores = []
    best_non_null_entry = None
    for entry in nbest:
      total_scores.append(entry.start_log_prob + entry.end_log_prob)
      if not best_non_null_entry:
        if entry.text:
          best_non_null_entry = entry

    probs = _compute_softmax(total_scores)

    nbest_json = []
    for (i, entry) in enumerate(nbest):
      output = collections.OrderedDict()
      output["text"] = entry.text
      output["probability"] = probs[i]
      output["start_log_prob"] = entry.start_log_prob
      output["end_log_prob"] = entry.end_log_prob
      nbest_json.append(output)

    assert len(nbest_json) >= 1

    all_predictions[example.qas_id] = nbest_json[0]["text"]
    all_nbest_json[example.qas_id] = nbest_json

  with tf.gfile.GFile(output_prediction_file, "w") as writer:
    writer.write(json.dumps(all_predictions, indent=4) + "\n")

  with tf.gfile.GFile(output_nbest_file, "w") as writer:
    writer.write(json.dumps(all_nbest_json, indent=4) + "\n")

  return all_predictions


####### following are from official SQuAD v1.1 evaluation scripts
def normalize_answer_v1(s):
  """Lower text and remove punctuation, articles and extra whitespace."""

  def remove_articles(text):
    return re.sub(r"\b(a|an|the)\b", " ", text)

  def white_space_fix(text):
    return " ".join(text.split())

  def remove_punc(text):
    exclude = set(string.punctuation)
    return "".join(ch for ch in text if ch not in exclude)

  def lower(text):
    return text.lower()

  return white_space_fix(remove_articles(remove_punc(lower(s))))


def f1_score(prediction, ground_truth):
  prediction_tokens = normalize_answer_v1(prediction).split()
  ground_truth_tokens = normalize_answer_v1(ground_truth).split()
  common = (
      collections.Counter(prediction_tokens)
      & collections.Counter(ground_truth_tokens))
  num_same = sum(common.values())
  if num_same == 0:
    return 0
  precision = 1.0 * num_same / len(prediction_tokens)
  recall = 1.0 * num_same / len(ground_truth_tokens)
  f1 = (2 * precision * recall) / (precision + recall)
  return f1


def exact_match_score(prediction, ground_truth):
  return (normalize_answer_v1(prediction) == normalize_answer_v1(ground_truth))


def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
  scores_for_ground_truths = []
  for ground_truth in ground_truths:
    score = metric_fn(prediction, ground_truth)
    scores_for_ground_truths.append(score)
  return max(scores_for_ground_truths)


def evaluate_v1(dataset, predictions):
  f1 = exact_match = total = 0
  for article in dataset:
    for paragraph in article["paragraphs"]:
      for qa in paragraph["qas"]:
        total += 1
        if qa["id"] not in predictions:
          message = ("Unanswered question " + six.ensure_str(qa["id"]) +
                     "  will receive score 0.")
          print(message, file=sys.stderr)
          continue
        ground_truths = [x["text"] for x in qa["answers"]]
        # ground_truths = list(map(lambda x: x["text"], qa["answers"]))
        prediction = predictions[qa["id"]]
        exact_match += metric_max_over_ground_truths(exact_match_score,
                                                     prediction, ground_truths)
        f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)

  exact_match = 100.0 * exact_match / total
  f1 = 100.0 * f1 / total

  return {"exact_match": exact_match, "f1": f1}

####### above are from official SQuAD v1.1 evaluation scripts
####### following are from official SQuAD v2.0 evaluation scripts
def make_qid_to_has_ans(dataset):
  qid_to_has_ans = {}
  for article in dataset:
    for p in article['paragraphs']:
      for qa in p['qas']:
        qid_to_has_ans[qa['id']] = bool(qa['answers'])
  return qid_to_has_ans

def normalize_answer_v2(s):
  """Lower text and remove punctuation, articles and extra whitespace."""
  def remove_articles(text):
    regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
    return re.sub(regex, ' ', text)
  def white_space_fix(text):
    return ' '.join(text.split())
  def remove_punc(text):
    exclude = set(string.punctuation)
    return ''.join(ch for ch in text if ch not in exclude)
  def lower(text):
    return text.lower()
  return white_space_fix(remove_articles(remove_punc(lower(s))))

def get_tokens(s):
  if not s: return []
  return normalize_answer_v2(s).split()

def compute_exact(a_gold, a_pred):
  return int(normalize_answer_v2(a_gold) == normalize_answer_v2(a_pred))

def compute_f1(a_gold, a_pred):
  gold_toks = get_tokens(a_gold)
  pred_toks = get_tokens(a_pred)
  common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
  num_same = sum(common.values())
  if len(gold_toks) == 0 or len(pred_toks) == 0:
    # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
    return int(gold_toks == pred_toks)
  if num_same == 0:
    return 0
  precision = 1.0 * num_same / len(pred_toks)
  recall = 1.0 * num_same / len(gold_toks)
  f1 = (2 * precision * recall) / (precision + recall)
  return f1

def get_raw_scores(dataset, preds):
  exact_scores = {}
  f1_scores = {}
  for article in dataset:
    for p in article['paragraphs']:
      for qa in p['qas']:
        qid = qa['id']
        gold_answers = [a['text'] for a in qa['answers']
                        if normalize_answer_v2(a['text'])]
        if not gold_answers:
          # For unanswerable questions, only correct answer is empty string
          gold_answers = ['']
        if qid not in preds:
          print('Missing prediction for %s' % qid)
          continue
        a_pred = preds[qid]
        # Take max over all gold answers
        exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
        f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
  return exact_scores, f1_scores

def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
  new_scores = {}
  for qid, s in scores.items():
    pred_na = na_probs[qid] > na_prob_thresh
    if pred_na:
      new_scores[qid] = float(not qid_to_has_ans[qid])
    else:
      new_scores[qid] = s
  return new_scores

def make_eval_dict(exact_scores, f1_scores, qid_list=None):
  if not qid_list:
    total = len(exact_scores)
    return collections.OrderedDict([
        ('exact', 100.0 * sum(exact_scores.values()) / total),
        ('f1', 100.0 * sum(f1_scores.values()) / total),
        ('total', total),
    ])
  else:
    total = len(qid_list)
    return collections.OrderedDict([
        ('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
        ('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
        ('total', total),
    ])


def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
  num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
  cur_score = num_no_ans
  best_score = cur_score
  best_thresh = 0.0
  qid_list = sorted(na_probs, key=lambda k: na_probs[k])
  for i, qid in enumerate(qid_list):
    if qid not in scores: continue
    if qid_to_has_ans[qid]:
      diff = scores[qid]
    else:
      if preds[qid]:
        diff = -1
      else:
        diff = 0
    cur_score += diff
    if cur_score > best_score:
      best_score = cur_score
      best_thresh = na_probs[qid]
  return 100.0 * best_score / len(scores), best_thresh


def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
  best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
  best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
  main_eval['best_exact'] = best_exact
  main_eval['best_exact_thresh'] = exact_thresh
  main_eval['best_f1'] = best_f1
  main_eval['best_f1_thresh'] = f1_thresh


def merge_eval(main_eval, new_eval, prefix):
  for k in new_eval:
    main_eval['%s_%s' % (prefix, k)] = new_eval[k]

####### above are from official SQuAD v2.0 evaluation scripts

def accumulate_predictions_v2(result_dict, cls_dict, all_examples,
                              all_features, all_results, n_best_size,
                              max_answer_length, start_n_top, end_n_top):
  """accumulate predictions for each positions in a dictionary."""

  example_index_to_features = collections.defaultdict(list)
  for feature in all_features:
    example_index_to_features[feature.example_index].append(feature)

  unique_id_to_result = {}
  for result in all_results:
    unique_id_to_result[result.unique_id] = result

  all_predictions = collections.OrderedDict()
  all_nbest_json = collections.OrderedDict()
  scores_diff_json = collections.OrderedDict()

  for (example_index, example) in enumerate(all_examples):
    if example_index not in result_dict:
      result_dict[example_index] = {}
    features = example_index_to_features[example_index]

    prelim_predictions = []
    # keep track of the minimum score of null start+end of position 0
    score_null = 1000000  # large and positive

    for (feature_index, feature) in enumerate(features):
      if feature.unique_id not in result_dict[example_index]:
        result_dict[example_index][feature.unique_id] = {}
      result = unique_id_to_result[feature.unique_id]
      cur_null_score = result.cls_logits

      # if we could have irrelevant answers, get the min score of irrelevant
      score_null = min(score_null, cur_null_score)

      doc_offset = feature.tokens.index("[SEP]") + 1
      for i in range(start_n_top):
        for j in range(end_n_top):
          start_log_prob = result.start_top_log_probs[i]
          start_index = result.start_top_index[i]

          j_index = i * end_n_top + j

          end_log_prob = result.end_top_log_probs[j_index]
          end_index = result.end_top_index[j_index]
          # We could hypothetically create invalid predictions, e.g., predict
          # that the start of the span is in the question. We throw out all
          # invalid predictions.
          if start_index - doc_offset >= len(feature.tok_start_to_orig_index):
            continue
          if start_index - doc_offset < 0:
            continue
          if end_index - doc_offset >= len(feature.tok_end_to_orig_index):
            continue
          if not feature.token_is_max_context.get(start_index, False):
            continue
          if end_index < start_index:
            continue
          length = end_index - start_index + 1
          if length > max_answer_length:
            continue
          start_idx = start_index - doc_offset
          end_idx = end_index - doc_offset
          if (start_idx, end_idx) not in result_dict[example_index][feature.unique_id]:
            result_dict[example_index][feature.unique_id][(start_idx, end_idx)] = []
          result_dict[example_index][feature.unique_id][(start_idx, end_idx)].append((start_log_prob, end_log_prob))
    if example_index not in cls_dict:
      cls_dict[example_index] = []
    cls_dict[example_index].append(score_null)


def write_predictions_v2(result_dict, cls_dict, all_examples, all_features,
                         all_results, n_best_size, max_answer_length,
                         output_prediction_file,
                         output_nbest_file, output_null_log_odds_file,
                         null_score_diff_threshold):
  """Write final predictions to the json file and log-odds of null if needed."""
  tf.logging.info("Writing predictions to: %s" % (output_prediction_file))
  tf.logging.info("Writing nbest to: %s" % (output_nbest_file))

  example_index_to_features = collections.defaultdict(list)
  for feature in all_features:
    example_index_to_features[feature.example_index].append(feature)

  unique_id_to_result = {}
  for result in all_results:
    unique_id_to_result[result.unique_id] = result

  all_predictions = collections.OrderedDict()
  all_nbest_json = collections.OrderedDict()
  scores_diff_json = collections.OrderedDict()

  for (example_index, example) in enumerate(all_examples):
    features = example_index_to_features[example_index]

    prelim_predictions = []
    # keep track of the minimum score of null start+end of position 0
    # score_null = 1000000  # large and positive

    for (feature_index, feature) in enumerate(features):
      for ((start_idx, end_idx), logprobs) in \
        result_dict[example_index][feature.unique_id].items():
        start_log_prob = 0
        end_log_prob = 0
        for logprob in logprobs:
          start_log_prob += logprob[0]
          end_log_prob += logprob[1]
        prelim_predictions.append(
            _PrelimPrediction(
                feature_index=feature_index,
                start_index=start_idx,
                end_index=end_idx,
                start_log_prob=start_log_prob / len(logprobs),
                end_log_prob=end_log_prob / len(logprobs)))

    prelim_predictions = sorted(
        prelim_predictions,
        key=lambda x: (x.start_log_prob + x.end_log_prob),
        reverse=True)

    seen_predictions = {}
    nbest = []
    for pred in prelim_predictions:
      if len(nbest) >= n_best_size:
        break
      feature = features[pred.feature_index]

      tok_start_to_orig_index = feature.tok_start_to_orig_index
      tok_end_to_orig_index = feature.tok_end_to_orig_index
      start_orig_pos = tok_start_to_orig_index[pred.start_index]
      end_orig_pos = tok_end_to_orig_index[pred.end_index]

      paragraph_text = example.paragraph_text
      final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip()

      if final_text in seen_predictions:
        continue

      seen_predictions[final_text] = True

      nbest.append(
          _NbestPrediction(
              text=final_text,
              start_log_prob=pred.start_log_prob,
              end_log_prob=pred.end_log_prob))

    # In very rare edge cases we could have no valid predictions. So we
    # just create a nonce prediction in this case to avoid failure.
    if not nbest:
      nbest.append(
          _NbestPrediction(
              text="",
              start_log_prob=-1e6,
              end_log_prob=-1e6))

    total_scores = []
    best_non_null_entry = None
    for entry in nbest:
      total_scores.append(entry.start_log_prob + entry.end_log_prob)
      if not best_non_null_entry:
        best_non_null_entry = entry

    probs = _compute_softmax(total_scores)

    nbest_json = []
    for (i, entry) in enumerate(nbest):
      output = collections.OrderedDict()
      output["text"] = entry.text
      output["probability"] = probs[i]
      output["start_log_prob"] = entry.start_log_prob
      output["end_log_prob"] = entry.end_log_prob
      nbest_json.append(output)

    assert len(nbest_json) >= 1
    assert best_non_null_entry is not None

    score_diff = sum(cls_dict[example_index]) / len(cls_dict[example_index])
    scores_diff_json[example.qas_id] = score_diff
    # predict null answers when null threshold is provided
    if null_score_diff_threshold is None or score_diff < null_score_diff_threshold:
      all_predictions[example.qas_id] = best_non_null_entry.text
    else:
      all_predictions[example.qas_id] = ""

    all_nbest_json[example.qas_id] = nbest_json
    assert len(nbest_json) >= 1

  with tf.gfile.GFile(output_prediction_file, "w") as writer:
    writer.write(json.dumps(all_predictions, indent=4) + "\n")

  with tf.gfile.GFile(output_nbest_file, "w") as writer:
    writer.write(json.dumps(all_nbest_json, indent=4) + "\n")

  with tf.gfile.GFile(output_null_log_odds_file, "w") as writer:
    writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
  return all_predictions, scores_diff_json


def create_v2_model(albert_config, is_training, input_ids, input_mask,
                    segment_ids, use_one_hot_embeddings, features,
                    max_seq_length, start_n_top, end_n_top, dropout_prob,
                    hub_module):
  """Creates a classification model."""
  (_, output) = fine_tuning_utils.create_albert(
      albert_config=albert_config,
      is_training=is_training,
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      use_one_hot_embeddings=use_one_hot_embeddings,
      use_einsum=True,
      hub_module=hub_module)

  bsz = tf.shape(output)[0]
  return_dict = {}
  output = tf.transpose(output, [1, 0, 2])

  # invalid position mask such as query and special symbols (PAD, SEP, CLS)
  p_mask = tf.cast(features["p_mask"], dtype=tf.float32)

  # logit of the start position
  with tf.variable_scope("start_logits"):
    start_logits = tf.layers.dense(
        output,
        1,
        kernel_initializer=modeling.create_initializer(
            albert_config.initializer_range))
    start_logits = tf.transpose(tf.squeeze(start_logits, -1), [1, 0])
    start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask
    start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)

  # logit of the end position
  with tf.variable_scope("end_logits"):
    if is_training:
      # during training, compute the end logits based on the
      # ground truth of the start position
      start_positions = tf.reshape(features["start_positions"], [-1])
      start_index = tf.one_hot(start_positions, depth=max_seq_length, axis=-1,
                               dtype=tf.float32)
      start_features = tf.einsum("lbh,bl->bh", output, start_index)
      start_features = tf.tile(start_features[None], [max_seq_length, 1, 1])
      end_logits = tf.layers.dense(
          tf.concat([output, start_features], axis=-1),
          albert_config.hidden_size,
          kernel_initializer=modeling.create_initializer(
              albert_config.initializer_range),
          activation=tf.tanh,
          name="dense_0")
      end_logits = contrib_layers.layer_norm(end_logits, begin_norm_axis=-1)

      end_logits = tf.layers.dense(
          end_logits,
          1,
          kernel_initializer=modeling.create_initializer(
              albert_config.initializer_range),
          name="dense_1")
      end_logits = tf.transpose(tf.squeeze(end_logits, -1), [1, 0])
      end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask
      end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
    else:
      # during inference, compute the end logits based on beam search

      start_top_log_probs, start_top_index = tf.nn.top_k(
          start_log_probs, k=start_n_top)
      start_index = tf.one_hot(start_top_index,
                               depth=max_seq_length, axis=-1, dtype=tf.float32)
      start_features = tf.einsum("lbh,bkl->bkh", output, start_index)
      end_input = tf.tile(output[:, :, None],
                          [1, 1, start_n_top, 1])
      start_features = tf.tile(start_features[None],
                               [max_seq_length, 1, 1, 1])
      end_input = tf.concat([end_input, start_features], axis=-1)
      end_logits = tf.layers.dense(
          end_input,
          albert_config.hidden_size,
          kernel_initializer=modeling.create_initializer(
              albert_config.initializer_range),
          activation=tf.tanh,
          name="dense_0")
      end_logits = contrib_layers.layer_norm(end_logits, begin_norm_axis=-1)
      end_logits = tf.layers.dense(
          end_logits,
          1,
          kernel_initializer=modeling.create_initializer(
              albert_config.initializer_range),
          name="dense_1")
      end_logits = tf.reshape(end_logits, [max_seq_length, -1, start_n_top])
      end_logits = tf.transpose(end_logits, [1, 2, 0])
      end_logits_masked = end_logits * (
          1 - p_mask[:, None]) - 1e30 * p_mask[:, None]
      end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
      end_top_log_probs, end_top_index = tf.nn.top_k(
          end_log_probs, k=end_n_top)
      end_top_log_probs = tf.reshape(
          end_top_log_probs,
          [-1, start_n_top * end_n_top])
      end_top_index = tf.reshape(
          end_top_index,
          [-1, start_n_top * end_n_top])

  if is_training:
    return_dict["start_log_probs"] = start_log_probs
    return_dict["end_log_probs"] = end_log_probs
  else:
    return_dict["start_top_log_probs"] = start_top_log_probs
    return_dict["start_top_index"] = start_top_index
    return_dict["end_top_log_probs"] = end_top_log_probs
    return_dict["end_top_index"] = end_top_index

  # an additional layer to predict answerability
  with tf.variable_scope("answer_class"):
    # get the representation of CLS
    cls_index = tf.one_hot(tf.zeros([bsz], dtype=tf.int32),
                           max_seq_length,
                           axis=-1, dtype=tf.float32)
    cls_feature = tf.einsum("lbh,bl->bh", output, cls_index)

    # get the representation of START
    start_p = tf.nn.softmax(start_logits_masked, axis=-1,
                            name="softmax_start")
    start_feature = tf.einsum("lbh,bl->bh", output, start_p)

    # note(zhiliny): no dependency on end_feature so that we can obtain
    # one single `cls_logits` for each sample
    ans_feature = tf.concat([start_feature, cls_feature], -1)
    ans_feature = tf.layers.dense(
        ans_feature,
        albert_config.hidden_size,
        activation=tf.tanh,
        kernel_initializer=modeling.create_initializer(
            albert_config.initializer_range),
        name="dense_0")
    ans_feature = tf.layers.dropout(ans_feature, dropout_prob,
                                    training=is_training)
    cls_logits = tf.layers.dense(
        ans_feature,
        1,
        kernel_initializer=modeling.create_initializer(
            albert_config.initializer_range),
        name="dense_1",
        use_bias=False)
    cls_logits = tf.squeeze(cls_logits, -1)

    return_dict["cls_logits"] = cls_logits

  return return_dict


def v2_model_fn_builder(albert_config, init_checkpoint, learning_rate,
                        num_train_steps, num_warmup_steps, use_tpu,
                        use_one_hot_embeddings, max_seq_length, start_n_top,
                        end_n_top, dropout_prob, hub_module):
  """Returns `model_fn` closure for TPUEstimator."""

  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    tf.logging.info("*** Features ***")
    for name in sorted(features.keys()):
      tf.logging.info("  name = %s, shape = %s" % (name, features[name].shape))

    # unique_ids = features["unique_ids"]
    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    outputs = create_v2_model(
        albert_config=albert_config,
        is_training=is_training,
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        use_one_hot_embeddings=use_one_hot_embeddings,
        features=features,
        max_seq_length=max_seq_length,
        start_n_top=start_n_top,
        end_n_top=end_n_top,
        dropout_prob=dropout_prob,
        hub_module=hub_module)

    tvars = tf.trainable_variables()

    initialized_variable_names = {}
    scaffold_fn = None
    if init_checkpoint:
      (assignment_map, initialized_variable_names
      ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
      if use_tpu:

        def tpu_scaffold():
          tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
          return tf.train.Scaffold()

        scaffold_fn = tpu_scaffold
      else:
        tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    tf.logging.info("**** Trainable Variables ****")
    for var in tvars:
      init_string = ""
      if var.name in initialized_variable_names:
        init_string = ", *INIT_FROM_CKPT*"
      tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                      init_string)

    output_spec = None
    if mode == tf.estimator.ModeKeys.TRAIN:
      seq_length = modeling.get_shape_list(input_ids)[1]

      def compute_loss(log_probs, positions):
        one_hot_positions = tf.one_hot(
            positions, depth=seq_length, dtype=tf.float32)

        loss = - tf.reduce_sum(one_hot_positions * log_probs, axis=-1)
        loss = tf.reduce_mean(loss)
        return loss

      start_loss = compute_loss(
          outputs["start_log_probs"], features["start_positions"])
      end_loss = compute_loss(
          outputs["end_log_probs"], features["end_positions"])

      total_loss = (start_loss + end_loss) * 0.5

      cls_logits = outputs["cls_logits"]
      is_impossible = tf.reshape(features["is_impossible"], [-1])
      regression_loss = tf.nn.sigmoid_cross_entropy_with_logits(
          labels=tf.cast(is_impossible, dtype=tf.float32), logits=cls_logits)
      regression_loss = tf.reduce_mean(regression_loss)

      # note(zhiliny): by default multiply the loss by 0.5 so that the scale is
      # comparable to start_loss and end_loss
      total_loss += regression_loss * 0.5
      train_op = optimization.create_optimizer(
          total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

      output_spec = contrib_tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          train_op=train_op,
          scaffold_fn=scaffold_fn)
    elif mode == tf.estimator.ModeKeys.PREDICT:
      predictions = {
          "unique_ids": features["unique_ids"],
          "start_top_index": outputs["start_top_index"],
          "start_top_log_probs": outputs["start_top_log_probs"],
          "end_top_index": outputs["end_top_index"],
          "end_top_log_probs": outputs["end_top_log_probs"],
          "cls_logits": outputs["cls_logits"]
      }
      output_spec = contrib_tpu.TPUEstimatorSpec(
          mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
    else:
      raise ValueError(
          "Only TRAIN and PREDICT modes are supported: %s" % (mode))

    return output_spec

  return model_fn


def evaluate_v2(result_dict, cls_dict, prediction_json, eval_examples,
                eval_features, all_results, n_best_size, max_answer_length,
                output_prediction_file, output_nbest_file,
                output_null_log_odds_file):
  null_score_diff_threshold = None
  predictions, na_probs = write_predictions_v2(
      result_dict, cls_dict, eval_examples, eval_features,
      all_results, n_best_size, max_answer_length,
      output_prediction_file, output_nbest_file,
      output_null_log_odds_file, null_score_diff_threshold)

  na_prob_thresh = 1.0  # default value taken from the eval script
  qid_to_has_ans = make_qid_to_has_ans(prediction_json)  # maps qid to True/False
  has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
  no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
  exact_raw, f1_raw = get_raw_scores(prediction_json, predictions)
  exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans,
                                        na_prob_thresh)
  f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans,
                                     na_prob_thresh)
  out_eval = make_eval_dict(exact_thresh, f1_thresh)
  find_all_best_thresh(out_eval, predictions, exact_raw, f1_raw, na_probs, qid_to_has_ans)
  null_score_diff_threshold = out_eval["best_f1_thresh"]

  predictions, na_probs = write_predictions_v2(
      result_dict, cls_dict,eval_examples, eval_features,
      all_results, n_best_size, max_answer_length,
      output_prediction_file, output_nbest_file,
      output_null_log_odds_file, null_score_diff_threshold)

  qid_to_has_ans = make_qid_to_has_ans(prediction_json)  # maps qid to True/False
  has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
  no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
  exact_raw, f1_raw = get_raw_scores(prediction_json, predictions)
  exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans,
                                        na_prob_thresh)
  f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans,
                                     na_prob_thresh)
  out_eval = make_eval_dict(exact_thresh, f1_thresh)
  out_eval["null_score_diff_threshold"] = null_score_diff_threshold
  return out_eval