File size: 21,807 Bytes
cc08753 5e33d3d cc08753 5e33d3d cc08753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import numpy as np
import math
import cv2
import matplotlib
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import numpy as np
import matplotlib.pyplot as plt
import cv2
import copy
import seaborn as sns
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
# transfer caffe model to pytorch which will match the layer name
def transfer(model, model_weights):
transfered_model_weights = {}
for weights_name in model.state_dict().keys():
if len(weights_name.split('.'))>4: # body25
transfered_model_weights[weights_name] = model_weights['.'.join(
weights_name.split('.')[3:])]
else:
transfered_model_weights[weights_name] = model_weights['.'.join(
weights_name.split('.')[1:])]
return transfered_model_weights
# draw the body keypoint and lims
def draw_bodypose(canvas, candidate, subset, model_type='body25'):
stickwidth = 4
if model_type == 'body25':
limbSeq = [[1,0],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[8,9],[9,10],\
[10,11],[8,12],[12,13],[13,14],[0,15],[0,16],[15,17],[16,18],\
[11,24],[11,22],[14,21],[14,19],[22,23],[19,20]]
njoint = 25
else:
limbSeq = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], \
[9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], \
[0, 15], [15, 17], [2, 16], [5, 17]]
njoint = 18
# colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
# [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
# [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85], [255,255,0], [255,255,85], [255,255,170],\
[255,255,255],[170,255,255],[85,255,255],[0,255,255]]
for i in range(njoint):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
for i in range(njoint-1):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i])]
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
# print('original (mX,mY,length,angle)',(mX,mY,length,angle))
# print(f'original cv2.ellipse2Poly((int({mY}), int({mX})), (int({length} / 2), {stickwidth}), int({angle}), 0, 360, 1)')
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
# print(f'cv2.fillConvexPoly(cur_canvas, polygon, colors[i])')
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
# plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
# plt.imshow(canvas[:, :, [2, 1, 0]])
return canvas
#subsets [[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, -1.0, 11.0, 12.0, -1.0, 13.0, 14.0, 15.0, 16.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 26.650803712300775, 17.0]]
#candidates [[983.0, 172.0, 0.8991263508796692, 0.0], [980.0, 352.0, 0.930037796497345, 1.0], [848.0, 342.0, 0.8652207255363464, 2.0], [811.0, 598.0, 0.8107873797416687, 3.0], [806.0, 817.0, 0.7464589476585388, 4.0], [1120.0, 361.0, 0.8538270592689514, 5.0], [1148.0, 601.0, 0.6797391176223755, 6.0], [1149.0, 834.0, 0.5189468264579773, 7.0], [968.0, 757.0, 0.6468111276626587, 8.0], [876.0, 756.0, 0.6387956142425537, 9.0], [854.0, 1072.0, 0.4211728572845459, 10.0], [1057.0, 759.0, 0.6311940550804138, 11.0], [1038.0, 1072.0, 0.38531172275543213, 12.0], [955.0, 146.0, 0.925083339214325, 13.0], [1016.0, 151.0, 0.9023998379707336, 14.0], [909.0, 167.0, 0.9096773862838745, 15.0], [1057.0, 173.0, 0.8605436086654663, 16.0]]
def get_bodypose(candidate, subset, model_type='coco'):
stickwidth = 4
if model_type == 'body25':
limbSeq = [[1,0],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[8,9],[9,10],\
[10,11],[8,12],[12,13],[13,14],[0,15],[0,16],[15,17],[16,18],\
[11,24],[11,22],[14,21],[14,19],[22,23],[19,20]]
njoint = 25
else:
limbSeq = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], \
[9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], \
[0, 15], [15, 17], [2, 16], [5, 17]]
njoint = 18
# colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
# [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
# [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85], [255,255,0], [255,255,85], [255,255,170],\
[255,255,255],[170,255,255],[85,255,255],[0,255,255]]
x_y_circles=[]
for i in range(njoint):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2] # 983.0, 172.0
x_y_circles.append((x, y))
# cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
x_y_sticks=[]
for i in range(njoint-1):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i])] #0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, -1.0, 11.0, 12.0, -1.0, 13.0, 14.0, 15.0, 16.0, -1.0, -1.0, -1.0, -1.0, -1.0
if -1 in index:
continue
# cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
x_y_sticks.append((mY, mX,angle,length))
# print('new (mX,mY,length,angle)',(mX,mY,length,angle))
# polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
# cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
# canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
# plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
# plt.imshow(canvas[:, :, [2, 1, 0]])
return (x_y_circles,x_y_sticks,)
#all_hands_peaks[[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [1100, 858], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], [[0, 0], [858, 859], [868, 894], [873, 938], [0, 0], [802, 920], [807, 961], [821, 977], [836, 992], [0, 0], [781, 955], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]]
def draw_handpose(canvas, all_hand_peaks, show_number=False):
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
fig = Figure(figsize=plt.figaspect(canvas))
fig.subplots_adjust(0, 0, 1, 1)
fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
bg = FigureCanvas(fig)
ax = fig.subplots()
ax.axis('off')
ax.imshow(canvas)
width, height = ax.figure.get_size_inches() * ax.figure.get_dpi()
for peaks in all_hand_peaks:
for ie, e in enumerate(edges):
if np.sum(np.all(peaks[e], axis=1)==0)==0:
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
# print(f'original ax.plot([{x1}, {x2}], [{y1}, {y2}], color=matplotlib.colors.hsv_to_rgb([ie/float({len(edges)}), 1.0, 1.0]))')
ax.plot([x1, x2], [y1, y2], color=matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0]))
for i, keyponit in enumerate(peaks):
x, y = keyponit
# print(f"original ax.plot({x}, {y}, 'r.')")
ax.plot(x, y, 'r.')
if show_number:
ax.text(x, y, str(i))
# print(f'width = {width}, height={height}')
bg.draw()
canvas = np.fromstring(bg.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
return canvas
def get_handpose(all_hand_peaks, show_number=False):
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
# fig = Figure(figsize=plt.figaspect(canvas))
# fig.subplots_adjust(0, 0, 1, 1)
# fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
# bg = FigureCanvas(fig)
# ax = fig.subplots()
# ax.axis('off')
# ax.imshow(canvas)
# width, height = ax.figure.get_size_inches() * ax.figure.get_dpi()
export_edges=[[],[]]
export_peaks=[[],[]]
for idx,peaks in enumerate(all_hand_peaks):
for ie, e in enumerate(edges):
if np.sum(np.all(peaks[e], axis=1)==0)==0:
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
export_edges[idx].append((ie,(x1, y1),(x2, y2)))
# ax.plot([x1, x2], [y1, y2], color=matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0]))
for i, keyponit in enumerate(peaks):
x, y = keyponit
# ax.plot(x, y, 'r.')
# if show_number:
# ax.text(x, y, str(i))
export_peaks[idx].append((x,y,str(i)))
# bg.draw()
# canvas = np.fromstring(bg.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
return (export_edges,export_peaks)
# image drawed by opencv is not good.
def draw_handpose_by_opencv(canvas, peaks, show_number=False):
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
# cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
# cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
for ie, e in enumerate(edges):
if np.sum(np.all(peaks[e], axis=1)==0)==0:
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
for i, keyponit in enumerate(peaks):
x, y = keyponit
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
if show_number:
cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
return canvas
# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(candidate, subset, oriImg):
# right hand: wrist 4, elbow 3, shoulder 2
# left hand: wrist 7, elbow 6, shoulder 5
ratioWristElbow = 0.33
detect_result = []
image_height, image_width = oriImg.shape[0:2]
#print(f'handDetect ---------- {image_height}, {image_width}')
for person in subset.astype(int):
# if any of three not detected
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
if not (has_left or has_right):
continue
hands = []
#left hand
if has_left:
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
x1, y1 = candidate[left_shoulder_index][:2]
x2, y2 = candidate[left_elbow_index][:2]
x3, y3 = candidate[left_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, True])
# right hand
if has_right:
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
x1, y1 = candidate[right_shoulder_index][:2]
x2, y2 = candidate[right_elbow_index][:2]
x3, y3 = candidate[right_wrist_index][:2]
hands.append([x1, y1, x2, y2, x3, y3, False])
for x1, y1, x2, y2, x3, y3, is_left in hands:
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
x = x3 + ratioWristElbow * (x3 - x2)
y = y3 + ratioWristElbow * (y3 - y2)
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
# x-y refers to the center --> offset to topLeft point
# handRectangle.x -= handRectangle.width / 2.f;
# handRectangle.y -= handRectangle.height / 2.f;
x -= width / 2
y -= width / 2 # width = height
# overflow the image
if x < 0: x = 0
if y < 0: y = 0
width1 = width
width2 = width
if x + width > image_width: width1 = image_width - x
if y + width > image_height: width2 = image_height - y
width = min(width1, width2)
# the max hand box value is 20 pixels
if width >= 20:
detect_result.append([int(x), int(y), int(width), is_left])
'''
return value: [[x, y, w, True if left hand else False]].
width=height since the network require squared input.
x, y is the coordinate of top left
'''
return detect_result
def drawStickmodel(oriImg,x_ytupple,x_y_sticks,export_edges,export_peaks):
canvas = copy.deepcopy(oriImg)
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85], [255,255,0], [255,255,85], [255,255,170],
[255,255,255],[170,255,255],[85,255,255],[0,255,255]]
stickwidth=4
for idx,(mX,mY,angle,length) in enumerate(x_y_sticks):
cur_canvas = canvas.copy()
# print(f'new cv2.ellipse2Poly((int({mY}), int({mX})), (int({length} / 2), {stickwidth}), int({angle}), 0, 360, 1)')
polygon = cv2.ellipse2Poly((int(mX), int(mY)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[idx])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
for idx,(x,y) in enumerate(x_ytupple):
cv2.circle(canvas, (int(x), int(y)), 4, colors[idx], thickness=-1)
## Handpose
fig = Figure(figsize=plt.figaspect(canvas))
fig.subplots_adjust(0, 0, 1, 1)
fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
bg = FigureCanvas(fig)
ax = fig.subplots()
ax.axis('off')
ax.imshow(canvas)
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
for both_hand_edges in export_edges:
for (ie,(x1, y1),(x2, y2)) in both_hand_edges:
# print(f'new ax.plot([{x1}, {x2}], [{y1}, {y2}], color=matplotlib.colors.hsv_to_rgb([ie/float({len(edges)}), 1.0, 1.0]))')
ax.plot([x1, x2], [y1, y2], color=matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0]))
width, height = ax.figure.get_size_inches() * ax.figure.get_dpi()
for both_hand_peaks in export_peaks:
for (x,y,text) in both_hand_peaks:
# print(f"new ax.plot({x}, {y}, 'r.')")
ax.plot(x, y, 'r.')
# print(f'NEW width = {width}, height={height}')
bg.draw()
canvas = np.fromstring(bg.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
####
# cv2.imwrite('C:/Users/spsar/Downloads/MVI_5177.MOV-transformed/MVI_5177.MOV-GaussianBlur/MVI_5177.MOV-14-modified.jpg', canvas)
return cv2.resize(canvas,(math.ceil(width),math.ceil(height)))
def draw_bar_plot_below_image(image, predictions, title, origImg):
"""
Draws a bar plot of predictions below an image using OpenCV and Matplotlib.
Args:
image (numpy.ndarray): The image to display.
predictions (numpy.ndarray): Array containing prediction probabilities.
"""
fig, ax = plt.subplots(figsize=(origImg.shape[1]/100,origImg.shape[0]/200), dpi=100)
plt.title(title)
# Create a figure and plot the bar chart
labels = list(predictions.keys())
probabilities = list(predictions.values())
# Create a Seaborn bar plot
sns.barplot(x=labels, y=probabilities,ax=ax) # Default color palette used
plt.close(fig) # Close plot to avoid memory leaks
fig.canvas.draw()
# Convert the plot to a NumPy array for manipulation
plot_image = np.array(fig.canvas.renderer.buffer_rgba())[:, :, :3] # Remove alpha channel
# Resize the plot image to match the width of the original image
# plot_image = cv2.resize(plot_image, (image.shape[1], math.ceil(image.shape[0] * 0.8))) # Adjust height ratio as needed
# Combine the image and plot image vertically (stacking)
combined_image = np.vstack((image, cv2.resize(plot_image,(image.shape[1],plot_image.shape[0]))))
return combined_image
def add_padding_to_bottom(image, pad_value, pad_height):
"""
Adds padding to the bottom of an image with a specified value.
Args:
image (numpy.ndarray): The input image.
pad_value (tuple or int): The color value to fill the padding area.
pad_height (int): The height of the padding to add at the bottom.
Returns:
numpy.ndarray: The image with padding added.
"""
# Get image dimensions
height, width, channels = image.shape
padding=np.zeros((pad_height, width, channels), dtype=image.dtype)
padding[:,:,:]=pad_value
# # Create a new image with the desired height
# padded_image = np.zeros((height + pad_height, width, channels), dtype=image.dtype)
# # Copy the original image to the top of the padded image
# padded_image[:height, :, :] = image
# # Fill the padding area with the specified value
# if isinstance(pad_value, tuple): # Check for multiple color values (e.g., BGR)
# padded_image[height:, :, :] = pad_value
# else: # Single value for all channels (e.g., black)
# padded_image[height:, :, :] = np.full((pad_height, width, 1), pad_value, dtype=image.dtype)
return np.vstack((image, padding))
def crop_to_drawing(image):
"""
Crops an image to the tight bounding rectangle of non-zero pixels.
Args:
image: A NumPy array representing the image.
Returns:
A cropped image (NumPy array) containing only the drawing area.
"""
image=np.transpose(image, (2, 0, 1))
united_x,united_h=0,0
for channel in np.arange(image.shape[0]):
x, y, w, h = cv2.boundingRect(image[channel])
if x>united_x:
united_x=x
if h>united_h:
united_h=h
for channel in np.arange(image.shape[0]):
# Crop the image
image[channel] = image[channel][y:y+united_h, x:x+united_x]
return image.transpose(image, (1,2,0))
# get max index of 2d array
def npmax(array):
arrayindex = array.argmax(1)
arrayvalue = array.max(1)
i = arrayvalue.argmax()
j = arrayindex[i]
return i, j
|