File size: 26,569 Bytes
cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 5e33d3d cc08753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
#Modified by Augmented Startups 2021
#Face Landmark User Interface with StreamLit
#Watch Computer Vision Tutorials at www.augmentedstartups.info/YouTube
import os
os.environ["KERAS_BACKEND"] = "torch"
import keras
import streamlit as st
import cv2
import numpy as np
import tempfile
import time
from PIL import Image
from keras.models import Sequential
import os
from keras.models import Sequential
import pickle
import keras
from keras.models import Sequential
import os
from keras.layers import LSTM, Dense, Bidirectional, Dropout,Input,BatchNormalization
from model import handpose_model, bodypose_25_model
from expression_mapping import expression_mapping
from ISL_Model_parameter import ISLSignPosTranslator
import pandas as pd
import numpy as np
import ffmpeg
import subprocess
from typing import NamedTuple
import json
import util
class FFProbeResult(NamedTuple):
return_code: int
json: str
error: str
def ffprobe(file_path) -> FFProbeResult:
command_array = ["ffprobe",
"-v", "quiet",
"-print_format", "json",
"-show_format",
"-show_streams",
file_path]
result = subprocess.run(command_array, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
return FFProbeResult(return_code=result.returncode,
json=result.stdout,
error=result.stderr)
X_body_test = [f'bodypeaks_x_{i}' for i in range(15)] + [f'bodypeaks_y_{i}' for i in range(15)]
X_hand0_test = [f'hand0peaks_x_{i}' for i in range(21)] + [f'hand0peaks_y_{i}' for i in range(21)] + [f'hand0peaks_peaktxt{i}' for i in range(21)]
X_hand1_test = [f'hand1peaks_x_{i}' for i in range(21)] + [f'hand1peaks_y_{i}' for i in range(21)] + [f'hand1peaks_peaktxt{i}' for i in range(21)]
feature_columns_new = X_body_test + X_hand0_test + X_hand1_test
label_columns = ['Expression_encoded']
@st.cache_resource
def create_timeseries_data(isl_data,feature_columns,label_columns, window_size=20):
"""
Creates timeseries data from a DataFrame with a specified window size
and padding at the end.
Args:
df (pandas.DataFrame): The input DataFrame.
window_size (int, optional): The window size for creating timeseries data. Defaults to 20.
pad_value (any, optional): The value to use for padding at the end. Defaults to None.
Returns:
list: A list of lists, where each inner list represents a window of timeseries data.
"""
# Handle empty DataFrame
if isl_data.empty:
return [],[]
X=[]
y=[]
i=0
for group, file_df in isl_data.groupby(['Type','Expression_encoded','FileName']):
expr_types,exprs,filepaths=group
# print('expr_types,exprs,filepaths',(expr_types,exprs,filepaths))
# print(type(name))
# Get the rolling window iterator with padding
first_frame=np.zeros((1,156))
for idx,x in enumerate([file_df[i:i+window_size] for i in range(0,file_df.shape[0],1)]):#enumerate(file_df.rolling(window=20, step=20,min_periods=1)):
# print(f'records processed {idx} of {file_df.shape[0]}')
# print(f"{filepaths}-Frame#{x['Frame'].values}/{file_df['Frame'].max()}")
if x.shape[0]<window_size:
X.append(np.concatenate((np.repeat(first_frame, (window_size-x.shape[0]), axis=0),x[feature_columns].values), axis=0))
y.append(exprs)
# print('len(X)',len(X))
# print('len(y)',len(y))
continue
X.append(x[feature_columns].values)
y.append(exprs)
# print('len(X)',len(X))
# print('len(y)',len(y))
# if idx>4:
# break
# i=i+1
# if i>4:
# break
return X,y
translation_model=None
@st.cache_resource
def get_translator_model():
translation_model = Sequential()
translation_model.add(Input(shape=((20, 156))))
translation_model.add(keras.layers.Masking(mask_value=0.))
translation_model.add(BatchNormalization())
translation_model.add(Bidirectional(LSTM(32, recurrent_dropout=0.2, return_sequences=True)))
translation_model.add(Dropout(0.2))
translation_model.add(Bidirectional(LSTM(32, recurrent_dropout=0.2)))
translation_model.add(keras.layers.Activation('elu'))
translation_model.add(Dense(32, use_bias=False, kernel_initializer='he_normal'))
translation_model.add(BatchNormalization())
translation_model.add(Dropout(0.2))
translation_model.add(keras.layers.Activation('elu'))
translation_model.add(Dense(32, kernel_initializer='he_normal',use_bias=False))
translation_model.add(BatchNormalization())
translation_model.add(keras.layers.Activation('elu'))
translation_model.add(Dropout(0.2))
translation_model.add(Dense(len(list(expression_mapping.keys())), activation='softmax'))
translation_model.load_weights('isl_model_final.keras')
return translation_model
testing_df=pd.read_csv('testing_cleaned.csv')
# test_statistic_df=pd.read_csv('test_statistic.csv')
test_files_df=pd.read_csv('test_files.csv')
# mp_drawing = mp.solutions.drawing_utils
# mp_face_mesh = mp.solutions.face_mesh
class Writer():
def __init__(self, output_file, input_fps, input_framesize, input_pix_fmt,
input_vcodec):
# if os.path.exists(output_file):
# os.remove(output_file)
self.ff_proc = (
ffmpeg
.input('pipe:',
format='rawvideo',
pix_fmt="bgr24",
s='%sx%s'%(input_framesize[1],input_framesize[0]),
r=input_fps)
.output(output_file, pix_fmt=input_pix_fmt, vcodec=input_vcodec)
.overwrite_output()
.run_async(pipe_stdin=True)
)
def __call__(self, frame):
self.ff_proc.stdin.write(frame.tobytes())
def close(self):
self.ff_proc.stdin.close()
self.ff_proc.wait()
st.title('ISL Indian Sign Language translation using LSTM')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 350px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 350px;
margin-left: -350px;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.title('ISL Sign Language Translation using Openpose')
st.sidebar.subheader('Parameters')
frame_wise_outputs={}
def weighted_average(nums, weights):
if sum(weights)==0:
return 0
return sum(x * y for x, y in zip(nums, weights)) / sum(weights)
@st.cache_data
def image_resize(image, width=None, height=None, inter=cv2.INTER_AREA):
# initialize the dimensions of the image to be resized and
# grab the image size
dim = None
(h, w) = image.shape[:2]
# if both the width and height are None, then return the
# original image
if width is None and height is None:
return image
# check to see if the width is None
if width is None:
# calculate the ratio of the height and construct the
# dimensions
r = height / float(h)
dim = (int(w * r), height)
# otherwise, the height is None
else:
# calculate the ratio of the width and construct the
# dimensions
r = width / float(w)
dim = (width, int(h * r))
# resize the image
resized = cv2.resize(image, dim, interpolation=inter)
# return the resized image
return resized
app_mode = st.sidebar.selectbox('Choose the App mode',
['About App','Run on Test Videos']
)
if app_mode =='About App':
st.markdown('In this application we are demonstrating model developed for translating the Indian Sign Language(ISL) using LSTM')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 400px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 400px;
margin-left: -400px;
}
</style>
""",
unsafe_allow_html=True,
)
# st.video('https://www.youtube.com/watch?v=FMaNNXgB_5c&ab_channel=AugmentedStartups')
st.markdown('''
# Dataset Used \n
This model is trained using [INCLUDE](https://zenodo.org/records/4010759) dataset. \n
### Key Statistics for the dataset is as follows-
+-----------------------+-----------------+
| Charasteristics | INCLUDE-DATASET |
+-----------------------+-----------------+
| Categories | 15 |
| Words | 263 |
| Videos | 4257 |
| Avg Videos per class | 16.3 |
| Avg Video Length | 2.57s |
| Min Video Length | 1.28s |
| Max Video Length | 6.16s |
| Frame Rate | 25fps |
| Resolution | 1920x1080 |
+-----------------------+-----------------+
#### Size of each category
+--------------------+-------------------+------------------+
| Category | Number of Classes | Number of Videos |
+--------------------+-------------------+------------------+
| Adjectives | 59 | 791 |
| Animals | 8 | 166 |
| Clothes | 10 | 198 |
| Colours | 11 | 222 |
| Days and Time | 22 | 306 |
| Electronics | 10 | 140 |
| Greetings | 9 | 185 |
| Means of Transport | 9 | 186 |
| Objects at Home | 27 | 379 |
| Occupations | 16 | 225 |
| People | 26 | 513 |
| Places | 19 | 399 |
| Pronouns | 8 | 168 |
| Seasons | 6 | 85 |
| Society | 23 | 324 |
| | Categories# 263 | Total Videos-4287|
+--------------------+-------------------+------------------+
Below are count of videos we were able to process (1986 of 4287). We processed limited set of records due to time/compute constraints.
''')
image = np.array(Image.open('eda/categories_processed.png'))
# categories_processed = np.array(Image.open('categories_processed.png'))
st.image(image)
st.markdown('''
#### Below are the count of Videos per Label for each Dataframe
''')
image = np.array(Image.open('eda/distribution_of_data.png'))
# categories_processed = np.array(Image.open('categories_processed.png'))
st.image(image)
st.markdown('''
### Date Pipeline
''')
image = np.array(Image.open('DataPipeline.png'))
# categories_processed = np.array(Image.open('categories_processed.png'))
st.image(image)
st.markdown('''
### Model structure
```
translation_model = Sequential()
translation_model.add(Input(shape=((20, 156))))
translation_model.add(keras.layers.Masking(mask_value=0.))
translation_model.add(BatchNormalization())
translation_model.add(Bidirectional(LSTM(32, recurrent_dropout=0.2, return_sequences=True)))
translation_model.add(Dropout(0.2))
translation_model.add(Bidirectional(LSTM(32, recurrent_dropout=0.2)))
translation_model.add(keras.layers.Activation('elu'))
translation_model.add(Dense(32, use_bias=False, kernel_initializer='he_normal'))
translation_model.add(BatchNormalization())
translation_model.add(Dropout(0.2))
translation_model.add(keras.layers.Activation('elu'))
translation_model.add(Dense(32, kernel_initializer='he_normal',use_bias=False))
translation_model.add(BatchNormalization())
translation_model.add(keras.layers.Activation('elu'))
translation_model.add(Dropout(0.2))
translation_model.add(Dense(len(list(expression_mapping.keys())), activation='softmax'))
isl_translator=ISLSignPosTranslator(bodypose_25_model(),handpose_model(), translation_model)
```
Total params: 82,679 (322.96 KB)
Trainable params: 82,239 (321.25 KB)
Non-trainable params: 440 (1.72 KB)
''')
image = np.array(Image.open('model-graph.png'))
# categories_processed = np.array(Image.open('categories_processed.png'))
st.image(image)
st.markdown('''
# Training
[Tensorboard](https://huggingface.co/cdsteameight/ISL-SignLanguageTranslation/tensorboard)
''')
elif app_mode =='Run on Test Videos':
# placeholder = st.empty()
category = st.sidebar.selectbox('Choose Category',
np.sort(test_files_df['Category'].unique(), axis=-1, kind='mergesort'))
# print(category)
mask = (test_files_df['Category']==category)
test_files_df_category=test_files_df[mask]
cls = st.sidebar.selectbox('Choose Class',
np.sort(test_files_df_category['Class'].unique(), axis=-1, kind='mergesort')
)
mask = (test_files_df['Class']==cls)
filename = st.sidebar.selectbox('Choose File',
np.sort(test_files_df_category[mask]['Filename'].unique(), axis=-1, kind='mergesort')
)
# print(f'test/{category}/{cls}/{filename}')
# mask = (include_df['Filepath'].str.contains(key[0])) & (include_df['type']==key[2]) & (include_df['expression']==key[1])
# stframe = st.empty()
if st.sidebar.button("Start", type="primary"):
mask = (testing_df['FileName'] == filename) & (testing_df['Type']==category)& (testing_df['Expression']==cls)
# filtered_df = current_test_df.sort_
window_size=20
current_test_df=testing_df[mask]
X_test_filtered,y_test_filtered = create_timeseries_data(current_test_df,feature_columns_new,label_columns,window_size=window_size)
# y_filtered_encoded=to_categorical(y_test_filtered, num_classes=len(df['Expression_encoded'].unique()))
X_test_filtered=np.array(X_test_filtered)
# encoded_translation=model(frame.reshape(1,frame.shape[0],frame.shape[1]))
st.set_option('deprecation.showfileUploaderEncoding', False)
# use_webcam = st.sidebar.button('Use Webcam')
# record = st.sidebar.checkbox("Record Video")
# if record:
# st.checkbox("Recording", value=True)
st.sidebar.markdown('---')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 400px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 400px;
margin-left: -400px;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown('---')
st.markdown(' ## Output')
runtime_progress = st.empty()
with runtime_progress.container():
df1 = pd.DataFrame([['--','--']], columns=['Frames Processed','Detected Class'])
my_table = st.table(df1)
# kpi1, kpi2 = st.columns(2)
# with kpi1:
# st.markdown("**Frames Processed**")
# kpi1_text = st.markdown(f'0/{current_test_df.shape[0]}')
# with kpi2:
# st.markdown("**Detected Class**")
# kpi2_text = st.markdown("--")
view = st.empty()
st.markdown("<hr/>", unsafe_allow_html=True)
stframes = st.empty()#[st.empty() for _ in range(20)]
# video_file_buffer = st.sidebar.file_uploader("Upload a video", type=[ "mp4", "mov",'avi','asf', 'm4v' ])
# tfflie = tempfile.NamedTemporaryFile(delete=False)
vid = cv2.VideoCapture(f'test/{category}/{cls}/{filename}')
ffprobe_result = ffprobe(f'test/{category}/{cls}/{filename}')
info = json.loads(ffprobe_result.json)
videoinfo = [i for i in info["streams"] if i["codec_type"] == "video"][0]
input_fps = videoinfo["avg_frame_rate"]
# input_fps = float(input_fps[0])/float(input_fps[1])
input_pix_fmt = videoinfo["pix_fmt"]
input_vcodec = videoinfo["codec_name"]
postfix = info["format"]["format_name"].split(",")[0]
# print(f'input_vcodec-{input_vcodec}')
width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps_input = int(vid.get(cv2.CAP_PROP_FPS))
#codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
# codec = cv2.VideoWriter_fourcc('V','P','0','9')
# out = cv2.VideoWriter('output1.mp4', codec, fps_input, (width, height))
# st.sidebar.text('Input Video')
# st.sidebar.video(tfflie.name)
fps = 0
i = 0
# cap = cv2.VideoCapture(video_file,)
totalFrames=int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
window_size=20
# print('current_test_df',current_test_df)
# print('totalFrames',totalFrames)
window=[]
prevTime = 0
postfix = info["format"]["format_name"].split(",")[0]
with tempfile.NamedTemporaryFile(suffix=f'.{postfix}',delete=False) as tfflie:
output_file = tfflie.name#'./output.mp4'
# width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
# height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps_input = int(vid.get(cv2.CAP_PROP_FPS))
#codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
# codec = cv2.VideoWriter_fourcc('m','p','4','v')
out = None
writer=None
weighted_avg_dict={}
idx=0
for _, row in current_test_df.iterrows():#enumerate(file_df.rolling(window=20, step=20,min_periods=1)):
# print(f'captured frame#{idx}')
if(vid.isOpened()):
ret, frame = vid.read()
if len(window)<window_size:
canvas=util.drawStickmodel(frame,eval(row['bodypose_circles']),eval(row['bodypose_sticks']),eval(row['handpose_edges']),eval(row['handpose_peaks']))
canvas_with_plot=util.draw_bar_plot_below_image(canvas,{}, f'Prediction bar plot - Frame number {idx+1} [** no predictions]',canvas)
canvas_with_plot=util.draw_bar_plot_below_image(canvas_with_plot,weighted_avg_dict, f'Weighted avg - Frame number {idx+1} [** no predictions]',canvas)
canvas_with_plot=util.add_padding_to_bottom(canvas_with_plot,(255,255,255),100)# Adds padding at bottom
if writer is None:
input_framesize = canvas_with_plot.shape[:2]
writer = Writer(output_file, input_fps, input_framesize, input_pix_fmt,
input_vcodec)
# if out is None:
# out=cv2.VideoWriter(output_file, codec, fps_input, frame.shape[:2])
writer(canvas_with_plot)
# out.write(canvas)
with runtime_progress.container():
df1 = pd.DataFrame([[f'{idx+1}/{current_test_df.shape[0]}','<model will output after 20 frames>']], columns=['Frames Processed','Detected Class'])
my_table = st.table(df1)
window.append(frame)
# kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{idx+1}/{current_test_df.shape[0]}</h1>", unsafe_allow_html=True)
# kpi2_text.write(f"<h1 style='text-align: center; color: red;'>--</h1>", unsafe_allow_html=True)
with view.container():
st.image(canvas_with_plot,channels = 'BGR',use_column_width=True)
else:
window[:-1] = window[1:]
window[-1]=frame
translation_model=get_translator_model()
# testing_df[]
encoded_translation = translation_model(X_test_filtered[idx-20].reshape(1,X_test_filtered[idx-20].shape[0],X_test_filtered[idx-20].shape[1]))
encoded_translation=encoded_translation[0].cpu().detach().numpy()
sorted_index=np.argsort(encoded_translation)[::-1]
maxindex=np.argmax(encoded_translation)
top_3_probs = encoded_translation.argsort()[-3:][::-1] # Get indices of top 3 probabilities (descending order)
top_3_categories = [expression_mapping[i] for i in top_3_probs] # Convert indices to category names (assuming class_names list exists)
top_3_values = encoded_translation[top_3_probs] # Get corresponding probabilities
# print(f'{idx} {encoded_translation[maxindex]:0.4f} {maxindex}-{expression_mapping[maxindex]} ')#{[(pi,encoded_translation[pi],expression_mapping[pi]) for pi in sorted_index]}
for category, prob in zip(top_3_categories, top_3_values):
if category not in frame_wise_outputs:
frame_wise_outputs[category]=[]
frame_wise_outputs[category].append(prob)
current_prob={}
for category, prob in zip(top_3_categories, top_3_values):
current_prob[category]=prob
for key in frame_wise_outputs:
weighted_avg_dict[key]=weighted_average(frame_wise_outputs[key],[len(frame_wise_outputs[key]) for i in range(len(frame_wise_outputs[key]))])
sorted_dict = dict(sorted(weighted_avg_dict.items(), key=lambda item: item[1], reverse=True))
canvas=util.drawStickmodel(frame,eval(row['bodypose_circles']),eval(row['bodypose_sticks']),eval(row['handpose_edges']),eval(row['handpose_peaks']))
canvas_with_plot=util.draw_bar_plot_below_image(canvas,current_prob, f'Prediction at frame window({idx-20+1}-{idx+1})',canvas)
canvas_with_plot=util.draw_bar_plot_below_image(canvas_with_plot,weighted_avg_dict, f'Weighted avg till window {idx+1}',canvas)
canvas_with_plot=util.add_padding_to_bottom(canvas_with_plot,(255,255,255),100)
writer(canvas_with_plot)
currTime = time.time()
fps = 1 / (currTime - prevTime)
prevTime = currTime
# out.write(frame)
# if record:
# #st.checkbox("Recording", value=True)
# out.write(frame)
#Dashboard
max_prob = float('-inf') # Initialize with negative infinity
max_key = None
for exp, prob in weighted_avg_dict.items():
if prob > max_prob:
max_prob = prob
max_key = exp
with runtime_progress.container():
df1 = pd.DataFrame([[f'{idx+1}/{current_test_df.shape[0]}',f'{max_key} ({max_prob*100:.2f}%)']], columns=['Frames Processed','Detected Class'])
my_table = st.table(df1)
# kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{idx+1}/{current_test_df.shape[0]}</h1>", unsafe_allow_html=True)
# kpi2_text.write(f"<h1 style='text-align: center; color: red;'>{max_key} ({max_prob*100:.2f}%)</h1>", unsafe_allow_html=True)
# with placeholder.container():
# # st.write(weighted_avg_dict)
# # data = {
# # "I": 0.7350964583456516,
# # "Hello": 0.1078806109726429,
# # "you": 0.11776176246348768,
# # "you (plural)": 0.12685142129916568
# # }
# # Convert the dictionary to a Pandas DataFrame for easier plotting
# df = pd.DataFrame.from_dict(weighted_avg_dict, orient='index', columns=['Values'])
# # Create a bar chart with Streamlit
# st.bar_chart(df)
# frame = cv2.resize(frame,(0,0),fx = 0.8 , fy = 0.8)
# frame = image_resize(image = frame, width = 640)
with view.container():
st.image(canvas_with_plot,channels = 'BGR',use_column_width=True)
idx=idx+1
# st.text('Video Processed')
with view.container():
writer.close()
# out. release()
output_video = open(output_file,'rb')
out_bytes = output_video.read()
st.video(out_bytes)
# out.release()
print(f'Output file - {output_file}')
cv2.destroyAllWindows()
vid.release()
|