File size: 26,569 Bytes
cc08753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e33d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc08753
 
 
 
 
 
5e33d3d
 
cc08753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e33d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc08753
 
 
 
 
 
 
5e33d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc08753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e33d3d
cc08753
5e33d3d
 
cc08753
 
 
5e33d3d
cc08753
 
 
5e33d3d
cc08753
5e33d3d
cc08753
5e33d3d
 
cc08753
 
5e33d3d
cc08753
 
5e33d3d
 
cc08753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e33d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc08753
 
5e33d3d
cc08753
 
 
 
5e33d3d
 
 
 
 
 
 
 
 
 
cc08753
 
 
 
 
5e33d3d
 
cc08753
 
 
 
 
 
 
 
 
 
 
5e33d3d
 
cc08753
5e33d3d
 
cc08753
5e33d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc08753
5e33d3d
 
 
 
cc08753
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
#Modified by Augmented Startups 2021
#Face Landmark User Interface with StreamLit
#Watch Computer Vision Tutorials at www.augmentedstartups.info/YouTube
import os
os.environ["KERAS_BACKEND"] = "torch"
import keras
import streamlit as st
import cv2
import numpy as np
import tempfile
import time
from PIL import Image
from keras.models import Sequential
import os
from keras.models import Sequential
import pickle
import keras
from keras.models import Sequential
import os
from keras.layers import LSTM, Dense, Bidirectional, Dropout,Input,BatchNormalization
from model import handpose_model, bodypose_25_model
from expression_mapping import expression_mapping
from ISL_Model_parameter import ISLSignPosTranslator
import pandas as pd
import numpy as np
import ffmpeg
import subprocess
from typing import NamedTuple
import json
import util

class FFProbeResult(NamedTuple):
    return_code: int
    json: str
    error: str


def ffprobe(file_path) -> FFProbeResult:
    command_array = ["ffprobe",
                     "-v", "quiet",
                     "-print_format", "json",
                     "-show_format",
                     "-show_streams",
                     file_path]
    result = subprocess.run(command_array, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
    return FFProbeResult(return_code=result.returncode,
                         json=result.stdout,
                         error=result.stderr)
X_body_test = [f'bodypeaks_x_{i}' for i in range(15)] + [f'bodypeaks_y_{i}' for i in range(15)]
X_hand0_test = [f'hand0peaks_x_{i}' for i in range(21)] + [f'hand0peaks_y_{i}' for i in range(21)] + [f'hand0peaks_peaktxt{i}' for i in range(21)]
X_hand1_test = [f'hand1peaks_x_{i}' for i in range(21)] + [f'hand1peaks_y_{i}' for i in range(21)] + [f'hand1peaks_peaktxt{i}' for i in range(21)]

feature_columns_new = X_body_test + X_hand0_test + X_hand1_test
label_columns = ['Expression_encoded']

@st.cache_resource
def create_timeseries_data(isl_data,feature_columns,label_columns, window_size=20):
  """
  Creates timeseries data from a DataFrame with a specified window size
  and padding at the end.

  Args:
      df (pandas.DataFrame): The input DataFrame.
      window_size (int, optional): The window size for creating timeseries data. Defaults to 20.
      pad_value (any, optional): The value to use for padding at the end. Defaults to None.

  Returns:
      list: A list of lists, where each inner list represents a window of timeseries data.
  """

  # Handle empty DataFrame
  if isl_data.empty:
    return [],[]

  X=[]
  y=[]
  i=0
  for group, file_df in isl_data.groupby(['Type','Expression_encoded','FileName']):
    expr_types,exprs,filepaths=group
    # print('expr_types,exprs,filepaths',(expr_types,exprs,filepaths))
    # print(type(name))
    # Get the rolling window iterator with padding
    first_frame=np.zeros((1,156))
    for idx,x in enumerate([file_df[i:i+window_size] for i in range(0,file_df.shape[0],1)]):#enumerate(file_df.rolling(window=20, step=20,min_periods=1)):
      # print(f'records processed {idx} of {file_df.shape[0]}')
      # print(f"{filepaths}-Frame#{x['Frame'].values}/{file_df['Frame'].max()}")
      if x.shape[0]<window_size:
        X.append(np.concatenate((np.repeat(first_frame, (window_size-x.shape[0]), axis=0),x[feature_columns].values), axis=0))
        y.append(exprs)
        # print('len(X)',len(X))
        # print('len(y)',len(y))
        continue


      X.append(x[feature_columns].values)
      y.append(exprs)
      # print('len(X)',len(X))
      # print('len(y)',len(y))
      # if idx>4:
      #   break

    # i=i+1
    # if i>4:
    #   break

  return X,y

translation_model=None

@st.cache_resource
def get_translator_model():
    translation_model = Sequential()
    translation_model.add(Input(shape=((20, 156))))
    translation_model.add(keras.layers.Masking(mask_value=0.))
    translation_model.add(BatchNormalization())
    translation_model.add(Bidirectional(LSTM(32, recurrent_dropout=0.2, return_sequences=True)))

    translation_model.add(Dropout(0.2))
    translation_model.add(Bidirectional(LSTM(32, recurrent_dropout=0.2)))

    translation_model.add(keras.layers.Activation('elu'))
    translation_model.add(Dense(32, use_bias=False, kernel_initializer='he_normal'))

    translation_model.add(BatchNormalization())
    translation_model.add(Dropout(0.2))
    translation_model.add(keras.layers.Activation('elu'))
    translation_model.add(Dense(32, kernel_initializer='he_normal',use_bias=False))

    translation_model.add(BatchNormalization())
    translation_model.add(keras.layers.Activation('elu'))
    translation_model.add(Dropout(0.2))
    translation_model.add(Dense(len(list(expression_mapping.keys())), activation='softmax'))
    translation_model.load_weights('isl_model_final.keras')
    return translation_model
    

testing_df=pd.read_csv('testing_cleaned.csv')
# test_statistic_df=pd.read_csv('test_statistic.csv')
test_files_df=pd.read_csv('test_files.csv')
# mp_drawing = mp.solutions.drawing_utils
# mp_face_mesh = mp.solutions.face_mesh


class Writer():
    def __init__(self, output_file, input_fps, input_framesize, input_pix_fmt,
                 input_vcodec):
        # if os.path.exists(output_file):
        #     os.remove(output_file)
        self.ff_proc = (
            ffmpeg
            .input('pipe:',
                   format='rawvideo',
                   pix_fmt="bgr24",
                   s='%sx%s'%(input_framesize[1],input_framesize[0]),
                   r=input_fps)
            .output(output_file, pix_fmt=input_pix_fmt, vcodec=input_vcodec)
            .overwrite_output()
            .run_async(pipe_stdin=True)
        )

    def __call__(self, frame):
        self.ff_proc.stdin.write(frame.tobytes())

    def close(self):
        self.ff_proc.stdin.close()
        self.ff_proc.wait()


st.title('ISL Indian Sign Language translation using LSTM')

st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 350px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 350px;
        margin-left: -350px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

st.sidebar.title('ISL Sign Language Translation using Openpose')
st.sidebar.subheader('Parameters')
frame_wise_outputs={}

def weighted_average(nums, weights):
  if sum(weights)==0:
      return 0
  return sum(x * y for x, y in zip(nums, weights)) / sum(weights)


@st.cache_data
def image_resize(image, width=None, height=None, inter=cv2.INTER_AREA):
    # initialize the dimensions of the image to be resized and
    # grab the image size
    dim = None
    (h, w) = image.shape[:2]

    # if both the width and height are None, then return the
    # original image
    if width is None and height is None:
        return image

    # check to see if the width is None
    if width is None:
        # calculate the ratio of the height and construct the
        # dimensions
        r = height / float(h)
        dim = (int(w * r), height)

    # otherwise, the height is None
    else:
        # calculate the ratio of the width and construct the
        # dimensions
        r = width / float(w)
        dim = (width, int(h * r))

    # resize the image
    resized = cv2.resize(image, dim, interpolation=inter)

    # return the resized image
    return resized

app_mode = st.sidebar.selectbox('Choose the App mode',
['About App','Run on Test Videos']
)

if app_mode =='About App':
    st.markdown('In this application we are demonstrating model developed for translating the Indian Sign Language(ISL) using LSTM')
    st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 400px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 400px;
        margin-left: -400px;
    }
    </style>
    """,
    unsafe_allow_html=True,
    )
    # st.video('https://www.youtube.com/watch?v=FMaNNXgB_5c&ab_channel=AugmentedStartups')

    st.markdown('''
          # Dataset Used \n 
            This model is trained using [INCLUDE](https://zenodo.org/records/4010759) dataset. \n

            ### Key Statistics for the dataset is as follows-

                
                
                +-----------------------+-----------------+
                |    Charasteristics    | INCLUDE-DATASET |
                +-----------------------+-----------------+
                | Categories            | 15              |
                | Words                 | 263             |
                | Videos                | 4257            |
                | Avg Videos per class  | 16.3            |
                | Avg Video Length      | 2.57s           |
                | Min Video Length      | 1.28s           |
                | Max Video Length      | 6.16s           |
                | Frame Rate            | 25fps           |
                | Resolution            | 1920x1080       |
                +-----------------------+-----------------+
            #### Size of each category
                
                
                +--------------------+-------------------+------------------+
                |      Category      | Number of Classes | Number of Videos |
                +--------------------+-------------------+------------------+
                | Adjectives         |                59 |              791 |
                | Animals            |                 8 |              166 |
                | Clothes            |                10 |              198 |
                | Colours            |                11 |              222 |
                | Days and Time      |                22 |              306 |
                | Electronics        |                10 |              140 |
                | Greetings          |                 9 |              185 |
                | Means of Transport |                 9 |              186 |
                | Objects at Home    |                27 |              379 |
                | Occupations        |                16 |              225 |
                | People             |                26 |              513 |
                | Places             |                19 |              399 |
                | Pronouns           |                 8 |              168 |
                | Seasons            |                 6 |               85 |
                | Society            |                23 |              324 |
                |                    |   Categories# 263 | Total Videos-4287|
                +--------------------+-------------------+------------------+


                
            Below are count of videos we were able to process (1986 of 4287). We processed limited set of records due to time/compute constraints.            
             
            ''')
    
    image = np.array(Image.open('eda/categories_processed.png'))
    # categories_processed = np.array(Image.open('categories_processed.png'))
    st.image(image)
    st.markdown('''
    #### Below are the count of Videos per Label for each Dataframe
                ''')
    image = np.array(Image.open('eda/distribution_of_data.png'))
    # categories_processed = np.array(Image.open('categories_processed.png'))


    st.image(image)

    st.markdown('''
                ### Date Pipeline
            ''')
    
    image = np.array(Image.open('DataPipeline.png'))
    # categories_processed = np.array(Image.open('categories_processed.png'))
    st.image(image)
    st.markdown('''
        ### Model structure
            ```
                translation_model = Sequential()
                translation_model.add(Input(shape=((20, 156))))
                translation_model.add(keras.layers.Masking(mask_value=0.))
                translation_model.add(BatchNormalization())
                translation_model.add(Bidirectional(LSTM(32, recurrent_dropout=0.2, return_sequences=True)))

                translation_model.add(Dropout(0.2))
                translation_model.add(Bidirectional(LSTM(32, recurrent_dropout=0.2)))

                translation_model.add(keras.layers.Activation('elu'))
                translation_model.add(Dense(32, use_bias=False, kernel_initializer='he_normal'))

                translation_model.add(BatchNormalization())
                translation_model.add(Dropout(0.2))
                translation_model.add(keras.layers.Activation('elu'))
                translation_model.add(Dense(32, kernel_initializer='he_normal',use_bias=False))

                translation_model.add(BatchNormalization())
                translation_model.add(keras.layers.Activation('elu'))
                translation_model.add(Dropout(0.2))
                translation_model.add(Dense(len(list(expression_mapping.keys())), activation='softmax'))
                isl_translator=ISLSignPosTranslator(bodypose_25_model(),handpose_model(), translation_model)
            ```
                
            Total params: 82,679 (322.96 KB)
            Trainable params: 82,239 (321.25 KB)
            Non-trainable params: 440 (1.72 KB)
        ''')
    image = np.array(Image.open('model-graph.png'))
    # categories_processed = np.array(Image.open('categories_processed.png'))
    st.image(image)
    st.markdown('''
            # Training
              [Tensorboard](https://huggingface.co/cdsteameight/ISL-SignLanguageTranslation/tensorboard)
            
        ''')
    
elif app_mode =='Run on Test Videos':
    # placeholder = st.empty()
    category = st.sidebar.selectbox('Choose Category',
                                    np.sort(test_files_df['Category'].unique(), axis=-1, kind='mergesort'))
    # print(category)
    mask = (test_files_df['Category']==category)
    test_files_df_category=test_files_df[mask]
    cls = st.sidebar.selectbox('Choose Class',
        np.sort(test_files_df_category['Class'].unique(), axis=-1, kind='mergesort')
    )
    mask = (test_files_df['Class']==cls)
    filename = st.sidebar.selectbox('Choose File',
        np.sort(test_files_df_category[mask]['Filename'].unique(), axis=-1, kind='mergesort')
    )
    # print(f'test/{category}/{cls}/{filename}')
    # mask = (include_df['Filepath'].str.contains(key[0])) & (include_df['type']==key[2]) & (include_df['expression']==key[1])
    # stframe = st.empty()
    
    if st.sidebar.button("Start", type="primary"):
        mask = (testing_df['FileName'] == filename) & (testing_df['Type']==category)& (testing_df['Expression']==cls)
        # filtered_df = current_test_df.sort_

        window_size=20
        current_test_df=testing_df[mask]
        X_test_filtered,y_test_filtered = create_timeseries_data(current_test_df,feature_columns_new,label_columns,window_size=window_size)
        # y_filtered_encoded=to_categorical(y_test_filtered, num_classes=len(df['Expression_encoded'].unique()))
        X_test_filtered=np.array(X_test_filtered)

        # encoded_translation=model(frame.reshape(1,frame.shape[0],frame.shape[1]))
        st.set_option('deprecation.showfileUploaderEncoding', False)

        # use_webcam = st.sidebar.button('Use Webcam')
        # record = st.sidebar.checkbox("Record Video")
        # if record:
        #     st.checkbox("Recording", value=True)

        st.sidebar.markdown('---')
        st.markdown(
        """
        <style>
        [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
            width: 400px;
        }
        [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
            width: 400px;
            margin-left: -400px;
        }
        </style>
        """,
        unsafe_allow_html=True,
            )

        st.sidebar.markdown('---')

        st.markdown(' ## Output')

        runtime_progress = st.empty()

        with runtime_progress.container():
            df1 = pd.DataFrame([['--','--']], columns=['Frames Processed','Detected Class'])

            my_table = st.table(df1)
        # kpi1, kpi2 = st.columns(2)

        # with kpi1:
        #     st.markdown("**Frames Processed**")
        #     kpi1_text = st.markdown(f'0/{current_test_df.shape[0]}')

        # with kpi2:
        #     st.markdown("**Detected Class**")
        #     kpi2_text = st.markdown("--")
        
        view = st.empty()

        st.markdown("<hr/>", unsafe_allow_html=True)
        stframes = st.empty()#[st.empty() for _ in range(20)]
        # video_file_buffer = st.sidebar.file_uploader("Upload a video", type=[ "mp4", "mov",'avi','asf', 'm4v' ])
        # tfflie = tempfile.NamedTemporaryFile(delete=False)


        vid = cv2.VideoCapture(f'test/{category}/{cls}/{filename}')

        ffprobe_result = ffprobe(f'test/{category}/{cls}/{filename}')
        info = json.loads(ffprobe_result.json)
        videoinfo = [i for i in info["streams"] if i["codec_type"] == "video"][0]
        input_fps = videoinfo["avg_frame_rate"]
        # input_fps = float(input_fps[0])/float(input_fps[1])
        input_pix_fmt = videoinfo["pix_fmt"]
        input_vcodec = videoinfo["codec_name"]
        postfix = info["format"]["format_name"].split(",")[0]
        # print(f'input_vcodec-{input_vcodec}')

        width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps_input = int(vid.get(cv2.CAP_PROP_FPS))

        #codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
        # codec = cv2.VideoWriter_fourcc('V','P','0','9')
        # out = cv2.VideoWriter('output1.mp4', codec, fps_input, (width, height))

        # st.sidebar.text('Input Video')
        # st.sidebar.video(tfflie.name)
        fps = 0
        i = 0



        # cap = cv2.VideoCapture(video_file,)
        totalFrames=int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
        window_size=20
        # print('current_test_df',current_test_df)
        # print('totalFrames',totalFrames)
        window=[]
    
    
        prevTime = 0
        postfix = info["format"]["format_name"].split(",")[0]
        
        with tempfile.NamedTemporaryFile(suffix=f'.{postfix}',delete=False) as tfflie:
            output_file = tfflie.name#'./output.mp4'
            # width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
            # height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
            fps_input = int(vid.get(cv2.CAP_PROP_FPS))

            #codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
            
            # codec = cv2.VideoWriter_fourcc('m','p','4','v')
            out = None
            writer=None
            weighted_avg_dict={}
            
            idx=0
            
            for _, row in current_test_df.iterrows():#enumerate(file_df.rolling(window=20, step=20,min_periods=1)):
                # print(f'captured frame#{idx}')
                if(vid.isOpened()):
                    ret, frame = vid.read()
                    
                    
                    if len(window)<window_size:
                        canvas=util.drawStickmodel(frame,eval(row['bodypose_circles']),eval(row['bodypose_sticks']),eval(row['handpose_edges']),eval(row['handpose_peaks']))
                        canvas_with_plot=util.draw_bar_plot_below_image(canvas,{}, f'Prediction bar plot - Frame number {idx+1} [** no predictions]',canvas)
                        canvas_with_plot=util.draw_bar_plot_below_image(canvas_with_plot,weighted_avg_dict, f'Weighted avg - Frame number {idx+1} [** no predictions]',canvas)
                        canvas_with_plot=util.add_padding_to_bottom(canvas_with_plot,(255,255,255),100)# Adds padding at bottom
                        
                        if writer is None:                        
                            input_framesize = canvas_with_plot.shape[:2]
                            writer = Writer(output_file, input_fps, input_framesize, input_pix_fmt,
                                            input_vcodec)

                        # if out is None:
                        #     out=cv2.VideoWriter(output_file, codec, fps_input, frame.shape[:2])
                        

                        writer(canvas_with_plot)
                        # out.write(canvas)
                        with runtime_progress.container():
                            df1 = pd.DataFrame([[f'{idx+1}/{current_test_df.shape[0]}','<model will output after 20 frames>']], columns=['Frames Processed','Detected Class'])

                            my_table = st.table(df1)
                        window.append(frame)
                        # kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{idx+1}/{current_test_df.shape[0]}</h1>", unsafe_allow_html=True)
                        # kpi2_text.write(f"<h1 style='text-align: center; color: red;'>--</h1>", unsafe_allow_html=True)
                        with view.container():
                            st.image(canvas_with_plot,channels = 'BGR',use_column_width=True)
                    else:

                        window[:-1] = window[1:]
                        window[-1]=frame
                        translation_model=get_translator_model()
                        # testing_df[]
                        
                        encoded_translation = translation_model(X_test_filtered[idx-20].reshape(1,X_test_filtered[idx-20].shape[0],X_test_filtered[idx-20].shape[1]))
                        encoded_translation=encoded_translation[0].cpu().detach().numpy()
                        sorted_index=np.argsort(encoded_translation)[::-1]
                        maxindex=np.argmax(encoded_translation)

                        top_3_probs = encoded_translation.argsort()[-3:][::-1]  # Get indices of top 3 probabilities (descending order)
                        top_3_categories = [expression_mapping[i] for i in top_3_probs]  # Convert indices to category names (assuming class_names list exists)
                        top_3_values = encoded_translation[top_3_probs]  # Get corresponding probabilities
                        # print(f'{idx} {encoded_translation[maxindex]:0.4f} {maxindex}-{expression_mapping[maxindex]} ')#{[(pi,encoded_translation[pi],expression_mapping[pi]) for pi in sorted_index]}
                        for category, prob in zip(top_3_categories, top_3_values):
                            if category not in frame_wise_outputs:
                                frame_wise_outputs[category]=[]
                            frame_wise_outputs[category].append(prob)
                        current_prob={}

                        for category, prob in zip(top_3_categories, top_3_values):
                            current_prob[category]=prob

                        for key in frame_wise_outputs:
                            weighted_avg_dict[key]=weighted_average(frame_wise_outputs[key],[len(frame_wise_outputs[key]) for i in range(len(frame_wise_outputs[key]))])

                        sorted_dict = dict(sorted(weighted_avg_dict.items(), key=lambda item: item[1], reverse=True))
                        canvas=util.drawStickmodel(frame,eval(row['bodypose_circles']),eval(row['bodypose_sticks']),eval(row['handpose_edges']),eval(row['handpose_peaks']))
                        canvas_with_plot=util.draw_bar_plot_below_image(canvas,current_prob, f'Prediction at frame window({idx-20+1}-{idx+1})',canvas)
                        canvas_with_plot=util.draw_bar_plot_below_image(canvas_with_plot,weighted_avg_dict, f'Weighted avg till window {idx+1}',canvas)
                        canvas_with_plot=util.add_padding_to_bottom(canvas_with_plot,(255,255,255),100)
                        writer(canvas_with_plot)

                        
                        currTime = time.time()
                        fps = 1 / (currTime - prevTime)
                        prevTime = currTime
                        # out.write(frame)
                        # if record:
                        #     #st.checkbox("Recording", value=True)
                        #     out.write(frame)
                        #Dashboard

                        max_prob = float('-inf')  # Initialize with negative infinity
                        max_key = None

                        for exp, prob in weighted_avg_dict.items():
                            if prob > max_prob:
                                max_prob = prob
                                max_key = exp
                        with runtime_progress.container():
                            df1 = pd.DataFrame([[f'{idx+1}/{current_test_df.shape[0]}',f'{max_key} ({max_prob*100:.2f}%)']], columns=['Frames Processed','Detected Class'])
                            my_table = st.table(df1)
                        # kpi1_text.write(f"<h1 style='text-align: center; color: red;'>{idx+1}/{current_test_df.shape[0]}</h1>", unsafe_allow_html=True)
                        # kpi2_text.write(f"<h1 style='text-align: center; color: red;'>{max_key} ({max_prob*100:.2f}%)</h1>", unsafe_allow_html=True)
                        # with placeholder.container():
                        #     # st.write(weighted_avg_dict)
                        #     # data = {
                        #     #     "I": 0.7350964583456516,
                        #     #     "Hello": 0.1078806109726429,
                        #     #     "you": 0.11776176246348768,
                        #     #     "you (plural)": 0.12685142129916568
                        #     # }

                        #     # Convert the dictionary to a Pandas DataFrame for easier plotting
                        #     df = pd.DataFrame.from_dict(weighted_avg_dict, orient='index', columns=['Values'])

                        #     # Create a bar chart with Streamlit
                        #     st.bar_chart(df)
                        # frame = cv2.resize(frame,(0,0),fx = 0.8 , fy = 0.8)
                        # frame = image_resize(image = frame, width = 640)
                        with view.container():
                            st.image(canvas_with_plot,channels = 'BGR',use_column_width=True)

                    idx=idx+1
                    

            # st.text('Video Processed')
            with view.container():
                writer.close()
                # out. release()
                output_video = open(output_file,'rb')
                out_bytes = output_video.read()
                st.video(out_bytes)
                # out.release()
                
                print(f'Output file - {output_file}')
            cv2.destroyAllWindows()
            vid.release()