Spaces:
Runtime error
Runtime error
File size: 2,931 Bytes
85300c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import DataCollatorForSeq2Seq
from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer
from transformers import pipeline
checkpoint = "Falconsai/text_summarization"
output_dir = "falcon-summ"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
import numpy as np
import evaluate
rouge = evaluate.load("rouge")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
result = rouge.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
result["gen_len"] = np.mean(prediction_lens)
return {k: round(v, 4) for k, v in result.items()}
def preprocess_function(examples, max_length=1024, max_target_length=128):
prefix = "summarize: "
inputs = [prefix + doc for doc in examples["text"]]
model_inputs = tokenizer(inputs, max_length=1024, truncation=True)
labels = tokenizer(text_target=examples["summary"], max_length=128, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
def prep_data():
billsum = load_dataset("billsum", split="ca_test")
billsum = billsum.train_test_split(test_size=0.2)
return billsum
def prep_model():
billsum = prep_data()
tokenized_billsum = billsum.map(preprocess_function, batched=True)
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
training_args = Seq2SeqTrainingArguments(
output_dir=output_dir,
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
weight_decay=0.01,
save_total_limit=3,
num_train_epochs=30,
predict_with_generate=True,
fp16=True,
push_to_hub=True,
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=tokenized_billsum["train"],
eval_dataset=tokenized_billsum["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
return trainer
def train_model(trainer):
trainer.train()
trainer.save_model(output_dir)
trainer.push_to_hub()
def prep_pipeline():
summarizer = pipeline("summarization", model=f"suneeln-duke/{output_dir}")
return summarizer
def gen_summary(summarizer, text):
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]["summary_text"]
return summary |