File size: 9,813 Bytes
3d4805e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange 
from einops.layers.torch import Rearrange
from timm.models.layers import trunc_normal_, DropPath


class SAST(nn.Module):

    def __init__(self, input_dim, output_dim, head_dim, window_size, type):
        super(SAST, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.head_dim = head_dim 
        self.scale = self.head_dim ** -0.5
        self.n_heads = input_dim//head_dim
        self.window_size = window_size
        self.type=type
        self.embedding_layer = nn.Linear(self.input_dim, 3*self.input_dim, bias=True)

        self.relative_position_params = nn.Parameter(torch.zeros((2 * window_size - 1)*(2 * window_size -1), self.n_heads))

        self.linear = nn.Linear(self.input_dim, self.output_dim)

        trunc_normal_(self.relative_position_params, std=.02)
        self.relative_position_params = torch.nn.Parameter(self.relative_position_params.view(2*window_size-1, 2*window_size-1, self.n_heads).transpose(1,2).transpose(0,1))

    def maskgen(self, h, w, p, shift):
        maskatt = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
        if self.type == 'W':
            return maskatt

        s = p - shift
        maskatt[-1, :, :s, :, s:, :] = True
        maskatt[-1, :, s:, :, :s, :] = True
        maskatt[:, -1, :, :s, :, s:] = True
        maskatt[:, -1, :, s:, :, :s] = True
        maskatt = rearrange(maskatt, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
        return maskatt

    def forward(self, x):

        if self.type!='W': x = torch.roll(x, shifts=(-(self.window_size//2), -(self.window_size//2)), dims=(1,2))
        x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
        h_windows = x.size(1)
        w_windows = x.size(2)


        x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
        qkv = self.embedding_layer(x)
        q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
        sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
        sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
        if self.type != 'W':
            maskatt = self.maskgen(h_windows, w_windows, self.window_size, shift=self.window_size//2)
            sim = sim.masked_fill_(maskatt, float("-inf"))

        probs = nn.functional.softmax(sim, dim=-1)
        output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
        output = rearrange(output, 'h b w p c -> b w p (h c)')
        output = self.linear(output)
        output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)

        if self.type!='W': output = torch.roll(output, shifts=(self.window_size//2, self.window_size//2), dims=(1,2))
        return output

    def relative_embedding(self):
        cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
        relation = cord[:, None, :] - cord[None, :, :] + self.window_size -1
        return self.relative_position_params[:, relation[:,:,0].long(), relation[:,:,1].long()]


class DRFE(nn.Module):
    def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):

        super(DRFE, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        assert type in ['W', 'SW']
        self.type = type
        if input_resolution <= window_size:
            self.type = 'W'

        self.ln1 = nn.LayerNorm(input_dim)
        self.msa = SAST(input_dim, input_dim, head_dim, window_size, self.type)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.ln2 = nn.LayerNorm(input_dim)
        self.mlp = nn.Sequential(
            nn.Linear(input_dim, 4 * input_dim),
            nn.GELU(),
            nn.Linear(4 * input_dim, output_dim),
        )

    def forward(self, x):
        x = x + self.drop_path(self.msa(self.ln1(x)))
        x = x + self.drop_path(self.mlp(self.ln2(x)))
        return x


class STCB(nn.Module):
    def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):

        super(STCB, self).__init__()
        self.conv_dim = conv_dim
        self.trans_dim = trans_dim
        self.head_dim = head_dim
        self.window_size = window_size
        self.drop_path = drop_path
        self.type = type
        self.input_resolution = input_resolution

        assert self.type in ['W', 'SW']
        if self.input_resolution <= self.window_size:
            self.type = 'W'

        self.trans_block = DRFE(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path, self.type, self.input_resolution)
        self.conv1_1 = nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True)
        self.conv1_2 = nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True)

        self.conv_block = nn.Sequential(
                nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
                nn.ReLU(True),
                nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
                )

    def forward(self, x):
        conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
        conv_x = self.conv_block(conv_x) + conv_x
        trans_x = Rearrange('b c h w -> b h w c')(trans_x)
        trans_x = self.trans_block(trans_x)
        trans_x = Rearrange('b h w c -> b c h w')(trans_x)
        res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
        x = x + res

        return x


class SAKDNNet(nn.Module):

    def __init__(self, in_nc=3, config=[2,2,2,2,2,2,2], dim=64, drop_path_rate=0.0, input_resolution=256):
        super(SAKDNNet, self).__init__()
        self.config = config
        self.dim = dim
        self.head_dim = 32
        self.window_size = 8

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]

        self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]

        begin = 0
        self.m_down1 = [STCB(dim//2, dim//2, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution) 
                      for i in range(config[0])] + \
                      [nn.Conv2d(dim, 2*dim, 2, 2, 0, bias=False)]

        begin += config[0]
        self.m_down2 = [STCB(dim, dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//2)
                      for i in range(config[1])] + \
                      [nn.Conv2d(2*dim, 4*dim, 2, 2, 0, bias=False)]

        begin += config[1]
        self.m_down3 = [STCB(2*dim, 2*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW',input_resolution//4)
                      for i in range(config[2])] + \
                      [nn.Conv2d(4*dim, 8*dim, 2, 2, 0, bias=False)]

        begin += config[2]
        self.m_body = [STCB(4*dim, 4*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//8)
                    for i in range(config[3])]

        begin += config[3]
        self.m_up3 = [nn.ConvTranspose2d(8*dim, 4*dim, 2, 2, 0, bias=False),] + \
                      [STCB(2*dim, 2*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW',input_resolution//4)
                      for i in range(config[4])]
                      
        begin += config[4]
        self.m_up2 = [nn.ConvTranspose2d(4*dim, 2*dim, 2, 2, 0, bias=False),] + \
                      [STCB(dim, dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//2)
                      for i in range(config[5])]
                      
        begin += config[5]
        self.m_up1 = [nn.ConvTranspose2d(2*dim, dim, 2, 2, 0, bias=False),] + \
                    [STCB(dim//2, dim//2, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution) 
                      for i in range(config[6])]

        self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]

        self.m_head = nn.Sequential(*self.m_head)
        self.m_down1 = nn.Sequential(*self.m_down1)
        self.m_down2 = nn.Sequential(*self.m_down2)
        self.m_down3 = nn.Sequential(*self.m_down3)
        self.m_body = nn.Sequential(*self.m_body)
        self.m_up3 = nn.Sequential(*self.m_up3)
        self.m_up2 = nn.Sequential(*self.m_up2)
        self.m_up1 = nn.Sequential(*self.m_up1)
        self.m_tail = nn.Sequential(*self.m_tail)  

    def forward(self, x0):

        h, w = x0.size()[-2:]
        paddingBottom = int(np.ceil(h/64)*64-h)
        paddingRight = int(np.ceil(w/64)*64-w)
        x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)

        x1 = self.m_head(x0)
        x2 = self.m_down1(x1)
        x3 = self.m_down2(x2)
        x4 = self.m_down3(x3)
        x = self.m_body(x4)
        x = self.m_up3(x+x4)
        x = self.m_up2(x+x3)
        x = self.m_up1(x+x2)
        x = self.m_tail(x+x1)

        x = x[..., :h, :w]
        
        return x


    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)



if __name__ == '__main__':

    # torch.cuda.empty_cache()
    net = SAKDNNet()

    x = torch.randn((2, 3, 64, 128))
    x = net(x)
    print(x.shape)