Spaces:
Running
Running
File size: 9,813 Bytes
3d4805e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange
from einops.layers.torch import Rearrange
from timm.models.layers import trunc_normal_, DropPath
class SAST(nn.Module):
def __init__(self, input_dim, output_dim, head_dim, window_size, type):
super(SAST, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.head_dim = head_dim
self.scale = self.head_dim ** -0.5
self.n_heads = input_dim//head_dim
self.window_size = window_size
self.type=type
self.embedding_layer = nn.Linear(self.input_dim, 3*self.input_dim, bias=True)
self.relative_position_params = nn.Parameter(torch.zeros((2 * window_size - 1)*(2 * window_size -1), self.n_heads))
self.linear = nn.Linear(self.input_dim, self.output_dim)
trunc_normal_(self.relative_position_params, std=.02)
self.relative_position_params = torch.nn.Parameter(self.relative_position_params.view(2*window_size-1, 2*window_size-1, self.n_heads).transpose(1,2).transpose(0,1))
def maskgen(self, h, w, p, shift):
maskatt = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
if self.type == 'W':
return maskatt
s = p - shift
maskatt[-1, :, :s, :, s:, :] = True
maskatt[-1, :, s:, :, :s, :] = True
maskatt[:, -1, :, :s, :, s:] = True
maskatt[:, -1, :, s:, :, :s] = True
maskatt = rearrange(maskatt, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
return maskatt
def forward(self, x):
if self.type!='W': x = torch.roll(x, shifts=(-(self.window_size//2), -(self.window_size//2)), dims=(1,2))
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
h_windows = x.size(1)
w_windows = x.size(2)
x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
qkv = self.embedding_layer(x)
q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
if self.type != 'W':
maskatt = self.maskgen(h_windows, w_windows, self.window_size, shift=self.window_size//2)
sim = sim.masked_fill_(maskatt, float("-inf"))
probs = nn.functional.softmax(sim, dim=-1)
output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
output = rearrange(output, 'h b w p c -> b w p (h c)')
output = self.linear(output)
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
if self.type!='W': output = torch.roll(output, shifts=(self.window_size//2, self.window_size//2), dims=(1,2))
return output
def relative_embedding(self):
cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
relation = cord[:, None, :] - cord[None, :, :] + self.window_size -1
return self.relative_position_params[:, relation[:,:,0].long(), relation[:,:,1].long()]
class DRFE(nn.Module):
def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
super(DRFE, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
assert type in ['W', 'SW']
self.type = type
if input_resolution <= window_size:
self.type = 'W'
self.ln1 = nn.LayerNorm(input_dim)
self.msa = SAST(input_dim, input_dim, head_dim, window_size, self.type)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.ln2 = nn.LayerNorm(input_dim)
self.mlp = nn.Sequential(
nn.Linear(input_dim, 4 * input_dim),
nn.GELU(),
nn.Linear(4 * input_dim, output_dim),
)
def forward(self, x):
x = x + self.drop_path(self.msa(self.ln1(x)))
x = x + self.drop_path(self.mlp(self.ln2(x)))
return x
class STCB(nn.Module):
def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
super(STCB, self).__init__()
self.conv_dim = conv_dim
self.trans_dim = trans_dim
self.head_dim = head_dim
self.window_size = window_size
self.drop_path = drop_path
self.type = type
self.input_resolution = input_resolution
assert self.type in ['W', 'SW']
if self.input_resolution <= self.window_size:
self.type = 'W'
self.trans_block = DRFE(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path, self.type, self.input_resolution)
self.conv1_1 = nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True)
self.conv1_2 = nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True)
self.conv_block = nn.Sequential(
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
nn.ReLU(True),
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
)
def forward(self, x):
conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
conv_x = self.conv_block(conv_x) + conv_x
trans_x = Rearrange('b c h w -> b h w c')(trans_x)
trans_x = self.trans_block(trans_x)
trans_x = Rearrange('b h w c -> b c h w')(trans_x)
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
x = x + res
return x
class SAKDNNet(nn.Module):
def __init__(self, in_nc=3, config=[2,2,2,2,2,2,2], dim=64, drop_path_rate=0.0, input_resolution=256):
super(SAKDNNet, self).__init__()
self.config = config
self.dim = dim
self.head_dim = 32
self.window_size = 8
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
begin = 0
self.m_down1 = [STCB(dim//2, dim//2, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution)
for i in range(config[0])] + \
[nn.Conv2d(dim, 2*dim, 2, 2, 0, bias=False)]
begin += config[0]
self.m_down2 = [STCB(dim, dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//2)
for i in range(config[1])] + \
[nn.Conv2d(2*dim, 4*dim, 2, 2, 0, bias=False)]
begin += config[1]
self.m_down3 = [STCB(2*dim, 2*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW',input_resolution//4)
for i in range(config[2])] + \
[nn.Conv2d(4*dim, 8*dim, 2, 2, 0, bias=False)]
begin += config[2]
self.m_body = [STCB(4*dim, 4*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//8)
for i in range(config[3])]
begin += config[3]
self.m_up3 = [nn.ConvTranspose2d(8*dim, 4*dim, 2, 2, 0, bias=False),] + \
[STCB(2*dim, 2*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW',input_resolution//4)
for i in range(config[4])]
begin += config[4]
self.m_up2 = [nn.ConvTranspose2d(4*dim, 2*dim, 2, 2, 0, bias=False),] + \
[STCB(dim, dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//2)
for i in range(config[5])]
begin += config[5]
self.m_up1 = [nn.ConvTranspose2d(2*dim, dim, 2, 2, 0, bias=False),] + \
[STCB(dim//2, dim//2, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution)
for i in range(config[6])]
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
self.m_head = nn.Sequential(*self.m_head)
self.m_down1 = nn.Sequential(*self.m_down1)
self.m_down2 = nn.Sequential(*self.m_down2)
self.m_down3 = nn.Sequential(*self.m_down3)
self.m_body = nn.Sequential(*self.m_body)
self.m_up3 = nn.Sequential(*self.m_up3)
self.m_up2 = nn.Sequential(*self.m_up2)
self.m_up1 = nn.Sequential(*self.m_up1)
self.m_tail = nn.Sequential(*self.m_tail)
def forward(self, x0):
h, w = x0.size()[-2:]
paddingBottom = int(np.ceil(h/64)*64-h)
paddingRight = int(np.ceil(w/64)*64-w)
x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
x1 = self.m_head(x0)
x2 = self.m_down1(x1)
x3 = self.m_down2(x2)
x4 = self.m_down3(x3)
x = self.m_body(x4)
x = self.m_up3(x+x4)
x = self.m_up2(x+x3)
x = self.m_up1(x+x2)
x = self.m_tail(x+x1)
x = x[..., :h, :w]
return x
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if __name__ == '__main__':
# torch.cuda.empty_cache()
net = SAKDNNet()
x = torch.randn((2, 3, 64, 128))
x = net(x)
print(x.shape)
|