File size: 10,182 Bytes
925548f
 
 
 
 
 
 
 
 
 
1f53a42
925548f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f53a42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import argparse

import numpy as np
import torch
import gradio

import gradio as gr

def object_detection(image):
    image = image.convert("RGB")
    image = image.resize((640, 640))
    image = np.array(image).transpose((2, 0, 1))
    image = np.expand_dims(image, axis=0).astype(np.float32)

    # Run the model
    outputs = session.run([output_name], {input_name: image})

    # Postprocess the prediction
    prediction = outputs[0][0]

    return prediction




with gr.Blocks() as demo:
    with gr.Row():
        image_input=gr.Image()
        image_output=gr.Image()
        image_text =gr.Text()
    image_button=gr.Button('start')

    image_button.click(object_detection,inputs=image_input,outputs=[image_output,image_text])
demo.close()
demo.launch(server_port=9090)import os
import sys
import argparse
import time
from pathlib import Path
import pandas as pd

import gradio as gr
import cv2
from PIL import Image
import torch
import torch.backends.cudnn as cudnn
from numpy import random

BASE_DIR = "/home/user/app"
os.chdir(BASE_DIR)
os.makedirs(f"{BASE_DIR}/input",exist_ok=True)
os.system(f"git clone https://github.com/WongKinYiu/yolov7.git {BASE_DIR}/yolov7")
sys.path.append(f'{BASE_DIR}/yolov7')

def detect(opt, save_img=False):    
    from models.experimental import attempt_load
    from utils.datasets import LoadStreams, LoadImages
    from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
        scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
    from utils.plots import plot_one_box
    from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
    
    bbox = {}
    source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
    save_img = not opt.nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size

    if trace:
        model = TracedModel(model, device, opt.img_size)

    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    old_img_w = old_img_h = imgsz
    old_img_b = 1

    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Warmup
        if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
            old_img_b = img.shape[0]
            old_img_h = img.shape[2]
            old_img_w = img.shape[3]
            for i in range(3):
                model(img, augment=opt.augment)[0]

        # Inference
        t1 = time_synchronized()
        with torch.no_grad():   # Calculating gradients would cause a GPU memory leak
            pred = model(img, augment=opt.augment)[0]
        t2 = time_synchronized()

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t3 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
#                 print(f"BOXES ---->>>> {det[:, :4]}")
                bbox[f"{txt_path.split('/')[4]}"]=(det[:, :4]).numpy()

               # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)

            # Print time (inference + NMS)
            print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')

            # Stream results
            # if view_img:
            #     cv2.imshow(str(p), im0)
            #     cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    # Image.fromarray(im0).show()
                    cv2.imwrite(save_path, im0) 
                    print(f" The image with the result is saved in: {save_path}")
                # else:  # 'video' or 'stream'
                #     if vid_path != save_path:  # new video
                #         vid_path = save_path
                #         if isinstance(vid_writer, cv2.VideoWriter):
                #             vid_writer.release()  # release previous video writer
                #         if vid_cap:  # video
                #             fps = vid_cap.get(cv2.CAP_PROP_FPS)
                #             w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                #             h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                #         else:  # stream
                #             fps, w, h = 30, im0.shape[1], im0.shape[0]
                #             save_path += '.mp4'
                #         vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                #     vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        #print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')
    return bbox,save_path

class options:
    def __init__(self, weights, source, img_size=640, conf_thres=0.1, iou_thres=0.45, device='', 
                 view_img=False, save_txt=False, save_conf=False, nosave=False, classes=None, 
                 agnostic_nms=False, augment=False, update=False, project='runs/detect', name='exp', 
                 exist_ok=False, no_trace=False):
        self.weights=weights
        self.source=source
        self.img_size=img_size
        self.conf_thres=conf_thres
        self.iou_thres=iou_thres
        self.device=device
        self.view_img=view_img
        self.save_txt=save_txt
        self.save_conf=save_conf
        self.nosave=nosave
        self.classes=classes
        self.agnostic_nms=agnostic_nms
        self.augment=augment
        self.update=update
        self.project=project
        self.name=name
        self.exist_ok=exist_ok
        self.no_trace=no_trace

def get_output(image):
    image.save(f"{BASE_DIR}/input/image.jpg")
    source = f"{BASE_DIR}/input"
    opt = options(weights='logo_detection.pt',source=source)
    bbox = None
    with torch.no_grad():
        # if opt.update:  # update all models (to fix SourceChangeWarning)
        #     for opt.weights in ['yolov7.pt']:
        #         bbox,output_path = detect(opt)
        #         strip_optimizer(opt.weights)
        # else:
        bbox,output_path = detect(opt)
    if os.path.exists(output_path):
        return Image.open(output_path)
    else:
        return image

gr.Interface(fn=get_output, 
         inputs=gr.Image(type = "pil", label="Your image"),
         outputs="image"
         ).launch(debug=True)