Spaces:
Runtime error
Runtime error
File size: 3,769 Bytes
ac322b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import argparse
import os
from importlib import import_module
import gradio as gr
from tqdm import tqdm
import models.TextCNN
import torch
import pickle as pkl
from utils import build_dataset
classes=['finance','realty','stocks','education','science','society','politics','sports','game','entertainment']
MAX_VOCAB_SIZE = 10000 # 词表长度限制
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
def build_vocab(file_path, tokenizer, max_size, min_freq):
vocab_dic = {}
with open(file_path, 'r', encoding='UTF-8') as f:
for line in tqdm(f):
lin = line.strip()
if not lin:
continue
content = lin.split('\t')[0]
for word in tokenizer(content):
vocab_dic[word] = vocab_dic.get(word, 0) + 1
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[:max_size]
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
return vocab_dic
parser = argparse.ArgumentParser(description='Chinese Text Classification')
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
args = parser.parse_args()
model_name='TextCNN'
dataset = 'THUCNews' # 数据集
embedding = 'embedding_SougouNews.npz'
x = import_module('models.' + model_name)
config = x.Config(dataset, embedding)
device='cuda:0'
model=models.TextCNN.Model(config)
# vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt'))
model.to(device)
model.eval()
tokenizer = lambda x: [y for y in x] # char-level
if os.path.exists(config.vocab_path):
vocab = pkl.load(open(config.vocab_path, 'rb'))
else:
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(vocab, open(config.vocab_path, 'wb'))
print(f"Vocab size: {len(vocab)}")
# content='时评:“国学小天才”录取缘何少佳话'
content=input('输入语句:')
words_line = []
token = tokenizer(content)
seq_len = len(token)
pad_size=32
contents=[]
if pad_size:
if len(token) < pad_size:
token.extend([PAD] * (pad_size - len(token)))
else:
token = token[:pad_size]
seq_len = pad_size
# word to id
for word in token:
words_line.append(vocab.get(word, vocab.get(UNK)))
contents.append((words_line, seq_len))
print(words_line)
# input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension
x = torch.LongTensor([_[0] for _ in contents]).to(device)
# pad前的长度(超过pad_size的设为pad_size)
seq_len = torch.LongTensor([_[1] for _ in contents]).to(device)
input=(x,seq_len)
print(input)
with torch.no_grad():
output = model(input)
predic = torch.max(output.data, 1)[1].cpu().numpy()
print(predic)
print('类别为:{}'.format(classes[predic[0]]))
# with torch.no_grad():
# output=model(input)
# print(output)
#
# start_time = time.time()
# test_iter = build_iterator(test_data, config)
# with torch.no_grad():
# predict_all = np.array([], dtype=int)
# labels_all = np.array([], dtype=int)
# for texts, labels in test_iter:
# # texts=texts.to(device)
# print(texts)
# outputs = model(texts)
# loss = F.cross_entropy(outputs, labels)
# labels = labels.data.cpu().numpy()
# predic = torch.max(outputs.data, 1)[1].cpu().numpy()
# labels_all = np.append(labels_all, labels)
# predict_all = np.append(predict_all, predic)
# break
# print(labels_all)
# print(predict_all)
#
#
|