File size: 12,038 Bytes
b2b5a52
 
 
c6655cf
 
d1402fb
 
 
 
 
 
 
 
 
 
 
 
 
deefe4d
d1402fb
 
 
 
 
 
 
 
c6655cf
d1402fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6655cf
d1402fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6655cf
d1402fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91b527
d1402fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91b527
d1402fb
 
f91b527
d1402fb
 
 
 
 
 
 
 
 
 
 
 
 
 
f91b527
d1402fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from sklearn.ensemble import IsolationForest
from io import BytesIO
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib import colors
import pdfplumber
import base64
import random
import plotly.io as pio

# Fix for Kaleido
pio.kaleido.scope.mathjax = None

# App Configuration
st.set_page_config(
    page_title="WiFi Guardian πŸ›‘οΈ",
    page_icon="πŸ“Ά",
    layout="wide"
)

# Custom CSS for a polished interface
st.markdown("""
<style>
    .st-emotion-cache-1kyxreq {
        display: flex;
        flex-flow: wrap;
        gap: 2rem;
    }
    .reportview-container .main .block-container{
        padding-top: 2rem;
    }
    .sidebar .sidebar-content {
        background: linear-gradient(180deg, #2e3b4e, #1a2639);
    }
    .stButton>button {
        width: 100%;
        margin: 5px 0;
        transition: all 0.3s;
    }
    .stButton>button:hover {
        transform: scale(1.05);
    }
    .summary-box {
        padding: 20px;
        border-radius: 10px;
        background-color: #2e3b4e;
        margin: 10px 0;
    }
</style>
""", unsafe_allow_html=True)

# Motivational Quotes
QUOTES = [
    "πŸ›‘οΈ Cybersecurity is not a product, but a process!",
    "πŸ”’ Better safe than hacked!",
    "πŸ“Ά A secure network is a happy network!",
    "πŸ€– AI guards while you sleep!",
    "🚨 Detect before you regret!",
    "πŸ’» Security is always worth the investment!",
    "πŸ” Stay vigilant, stay secure!"
]

def show_quote():
    st.markdown(f"<h3 style='text-align: center; color: #4CAF50;'>{random.choice(QUOTES)}</h3>", 
                unsafe_allow_html=True)

# Main App Function
def main():
    # Initialize session state variables
    if 'current_step' not in st.session_state:
        st.session_state.current_step = 1
    if 'file_uploaded' not in st.session_state:
        st.session_state.file_uploaded = False
    if 'df' not in st.session_state:
        st.session_state.df = None

    # Sidebar Navigation
    with st.sidebar:
        st.title("πŸ” Navigation")
        st.markdown("---")
        
        if st.button("πŸ“€ 1. Upload File", help="Upload your network logs"):
            st.session_state.current_step = 1
        if st.button("πŸ“Š 2. Data Visualization", disabled=not st.session_state.file_uploaded):
            st.session_state.current_step = 2
        if st.button("πŸ“ˆ 3. Statistics Analysis", disabled=not st.session_state.file_uploaded):
            st.session_state.current_step = 3
        if st.button("πŸ“₯ 4. Download Report", disabled=not st.session_state.file_uploaded):
            st.session_state.current_step = 4

    # Main Content Area
    if st.session_state.current_step == 1:
        upload_file_section()
    elif st.session_state.current_step == 2:
        visualization_section()
    elif st.session_state.current_step == 3:
        statistics_section()
    elif st.session_state.current_step == 4:
        download_section()

def upload_file_section():
    st.title("πŸ“€ Upload Network Logs")
    st.markdown("---")
    
    if not st.session_state.file_uploaded:
        show_quote()
        st.markdown("""
        ### Welcome to WiFi Guardian! πŸ€–
        **Protect your network with AI-powered anomaly detection**
        1. Upload network logs πŸ“€
        2. Visualize patterns πŸ“Š
        3. Generate reports πŸ“„
        """)
    
    uploaded_file = st.file_uploader(
        "Choose network logs (CSV/TXT/PDF)",
        type=["csv", "txt", "pdf"],
        label_visibility="collapsed"
    )
    
    if uploaded_file:
        try:
            process_file(uploaded_file)
            st.session_state.file_uploaded = True
            st.success("βœ… File processed successfully!")
            
            # Show file summary
            st.subheader("πŸ“‹ Upload Summary")
            col1, col2, col3 = st.columns(3)
            with col1:
                st.metric("Total Records", len(st.session_state.df))
            with col2:
                anomalies = sum(st.session_state.df['anomaly'] == -1)
                st.metric("Anomalies Detected", f"{anomalies} ({anomalies/len(st.session_state.df)*100:.1f}%)")
            with col3:
                st.metric("Max Traffic", f"{st.session_state.df['traffic'].max():.2f} Mbps")

        except Exception as e:
            st.error(f"Error processing file: {str(e)}")

def visualization_section():
    st.title("πŸ“Š Data Visualization")
    st.markdown("---")
    
    # 2D Visualization
    st.subheader("2D Traffic Analysis 🌐")
    # Use 'timestamp' if available; if not, generate a dummy one
    df = st.session_state.df.copy()
    if 'timestamp' not in df.columns:
        df['timestamp'] = pd.date_range(start="2021-01-01", periods=len(df), freq="T")
    fig2d = px.scatter(
        df,
        x='timestamp',
        y='traffic',
        color='anomaly',
        color_discrete_map={-1: 'orange', 1: 'blue'},
        title="2D Traffic Analysis"
    )
    st.plotly_chart(fig2d, use_container_width=True)
    
    # 3D Visualization
    st.subheader("3D Network Health 🌍")
    fig3d = px.scatter_3d(
        df,
        x='latency',
        y='packet_loss',
        z='traffic',
        color='anomaly',
        color_discrete_map={-1: 'orange', 1: 'blue'},
        title="3D Network Analysis"
    )
    st.plotly_chart(fig3d, use_container_width=True)

def statistics_section():
    st.title("πŸ“ˆ Statistical Analysis")
    st.markdown("---")
    
    st.subheader("Data Summary πŸ“")
    st.dataframe(st.session_state.df.describe(), use_container_width=True)
    
    st.subheader("Anomaly Distribution πŸ“Š")
    anomaly_counts = st.session_state.df['anomaly'].value_counts()
    fig = px.pie(
        names=['Normal', 'Anomaly'],
        values=[anomaly_counts.get(1, 0), anomaly_counts.get(-1, 0)],
        hole=0.4,
        color_discrete_sequence=['blue', 'orange'],
        title="Anomaly Distribution"
    )
    st.plotly_chart(fig, use_container_width=True)

def download_section():
    st.title("πŸ“₯ Download Report")
    st.markdown("---")
    
    if st.button("πŸ–¨οΈ Generate Full Report"):
        with st.spinner("Generating PDF report..."):
            generate_pdf_report()
            st.success("Report generated successfully!")
            
    if 'pdf_report' in st.session_state:
        st.markdown("---")
        b64 = base64.b64encode(st.session_state.pdf_report).decode()
        href = f'<a href="data:application/octet-stream;base64,{b64}" download="wifi_report.pdf">πŸ“₯ Download Full Report</a>'
        st.markdown(href, unsafe_allow_html=True)

def process_file(uploaded_file):
    try:
        # Process CSV files
        if uploaded_file.name.endswith('.csv'):
            df = pd.read_csv(uploaded_file)
        # Process TXT files
        elif uploaded_file.name.endswith('.txt'):
            lines = [line.decode().strip().split(',') for line in uploaded_file.readlines()]
            df = pd.DataFrame(lines[1:], columns=lines[0])
        # Process PDF files using pdfplumber
        elif uploaded_file.name.endswith('.pdf'):
            with pdfplumber.open(uploaded_file) as pdf:
                text = '\n'.join([page.extract_text() for page in pdf.pages])
            lines = [line.split(',') for line in text.split('\n') if line]
            df = pd.DataFrame(lines[1:], columns=lines[0])
        else:
            raise ValueError("Unsupported file type.")
        
        # Ensure required numeric columns exist and convert them
        numeric_cols = ['traffic', 'latency', 'packet_loss']
        for col in numeric_cols:
            if col not in df.columns:
                raise ValueError(f"Column '{col}' not found in data.")
            df[col] = pd.to_numeric(df[col], errors='coerce')
        
        # Run anomaly detection using IsolationForest with 40% contamination
        clf = IsolationForest(contamination=0.4, random_state=42)
        df['anomaly'] = clf.fit_predict(df[numeric_cols])
        
        st.session_state.df = df

    except Exception as e:
        st.error(f"Error processing file: {str(e)}")
        raise

def generate_pdf_report():
    try:
        buffer = BytesIO()
        doc = SimpleDocTemplate(buffer, pagesize=letter)
        styles = getSampleStyleSheet()
        elements = []
        
        # Custom Title Style
        title_style = ParagraphStyle(
            name='Title',
            parent=styles['Heading1'],
            fontSize=18,
            textColor=colors.darkblue,
            spaceAfter=14
        )
        
        # Add Title
        elements.append(Paragraph("WiFi Network Anomaly Detection", title_style))
        elements.append(Spacer(1, 12))
        
        # Add Summary Section
        elements.append(Paragraph("<b>Detection Summary:</b>", styles['Heading2']))
        summary_text = f"""
        β€’ Total Data Points: {len(st.session_state.df)}<br/>
        β€’ Anomalies Detected: {sum(st.session_state.df['anomaly'] == -1)}<br/>
        β€’ Maximum Traffic: {st.session_state.df['traffic'].max():.2f} Mbps<br/>
        β€’ Average Latency: {st.session_state.df['latency'].mean():.2f} ms<br/>
        β€’ Peak Packet Loss: {st.session_state.df['packet_loss'].max():.2f}%<br/>
        """
        elements.append(Paragraph(summary_text, styles['BodyText']))
        elements.append(PageBreak())
        
        # Generate and embed plots in memory using BytesIO
        
        # 2D Plot
        df = st.session_state.df.copy()
        if 'timestamp' not in df.columns:
            df['timestamp'] = pd.date_range(start="2021-01-01", periods=len(df), freq="T")
        fig2d = px.scatter(df, x='timestamp', y='traffic', 
                           color='anomaly', title="2D Traffic Analysis",
                           color_discrete_map={-1: 'orange', 1: 'blue'})
        img_bytes_2d = fig2d.to_image(format="png", engine="kaleido")
        img2d_io = BytesIO(img_bytes_2d)
        
        # 3D Plot
        fig3d = px.scatter_3d(df, x='latency', y='packet_loss',
                              z='traffic', color='anomaly', title="3D Network Analysis",
                              color_discrete_map={-1: 'orange', 1: 'blue'})
        img_bytes_3d = fig3d.to_image(format="png", engine="kaleido")
        img3d_io = BytesIO(img_bytes_3d)
        
        # Add 2D Plot
        elements.append(Paragraph("<b>2D Traffic Analysis</b>", styles['Heading2']))
        elements.append(Image(img2d_io, width=6*inch, height=4*inch))
        elements.append(Spacer(1, 12))
        
        # Add 3D Plot
        elements.append(Paragraph("<b>3D Network Analysis</b>", styles['Heading2']))
        elements.append(Image(img3d_io, width=6*inch, height=4*inch))
        elements.append(PageBreak())
        
        # Add Statistics Section
        elements.append(Paragraph("<b>Statistical Report</b>", styles['Heading1']))
        stats = st.session_state.df.describe()
        for col in ['traffic', 'latency', 'packet_loss']:
            elements.append(Paragraph(f"<b>{col.capitalize()} Statistics:</b>", styles['Heading3']))
            stats_text = f"""
            β€’ Mean: {stats[col]['mean']:.2f}<br/>
            β€’ Std Dev: {stats[col]['std']:.2f}<br/>
            β€’ Min: {stats[col]['min']:.2f}<br/>
            β€’ 25%: {stats[col]['25%']:.2f}<br/>
            β€’ 50%: {stats[col]['50%']:.2f}<br/>
            β€’ 75%: {stats[col]['75%']:.2f}<br/>
            β€’ Max: {stats[col]['max']:.2f}<br/>
            """
            elements.append(Paragraph(stats_text, styles['BodyText']))
            elements.append(Spacer(1, 12))
        
        doc.build(elements)
        st.session_state.pdf_report = buffer.getvalue()

    except Exception as e:
        st.error(f"Error generating report: {str(e)}")

if __name__ == "__main__":
    main()