File size: 13,262 Bytes
09c48e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import os
import shutil
from datetime import datetime
import gradio as gr
import pandas as pd
import time
import random
import uuid

def save_uploaded_files(files, session_id):
    """Save uploaded files to telemetry directory with session ID."""
    save_dir = os.path.join("telemetry_files", session_id)
    os.makedirs(save_dir, exist_ok=True)
    
    saved_paths = []
    for file in files:
        if file is not None:
            filename = os.path.basename(file.name)
            save_path = os.path.join(save_dir, filename)
            shutil.copy2(file.name, save_path)
            saved_paths.append(save_path)
    
    return saved_paths

def mock_process_documents(files, chunk_size, num_questions, question_types, complexity_types, 
                         difficulty, selected_models):
    """Mock processing function that simulates document processing."""
    time.sleep(5)  # Simulate 5 seconds of processing
    
    # Create session ID and save files
    session_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}"
    saved_files = save_uploaded_files(files, session_id)
    
    data = []
    for _ in range(num_questions):
        # Since question_types is now a list of selected values, we can use it directly
        question_type = random.choice(question_types)
        complexity = random.choice(complexity_types)
        model = random.choice(selected_models)
        
        question = f"[{complexity}] Sample {question_type} question {_+1} (Difficulty: {difficulty:.1f}, Model: {model})"
        answer = f"This is a sample answer for question {_+1}. Files processed: {', '.join(saved_files)}"
        data.append({
            "question_type": question_type,
            "complexity": complexity,
            "question": question,
            "answer": answer,
            "model": model,
            "difficulty": difficulty
        })
    
    return pd.DataFrame(data)

def generate_csv_file(df, session_id):
    """Generate and save CSV file for the results."""
    if df.empty:
        return None
    
    # Create session directory
    session_dir = os.path.join("telemetry_files", session_id)
    os.makedirs(session_dir, exist_ok=True)
    
    # Save CSV
    csv_path = os.path.join(session_dir, "results.csv")
    df.to_csv(csv_path, index=False)
    return csv_path

def process_files(
    input_files, chunk_size, num_questions,
    question_types_dict, complexity_types_dict,
    difficulty_level, model_selection_dict
):
    """Process files with the given configuration."""
    if not input_files:
        return pd.DataFrame(), "Error: No files uploaded", None
    
    # Convert checkbox groups to lists of selected values
    question_types = question_types_dict
    complexity_types = complexity_types_dict
    selected_models = model_selection_dict
    
    if not question_types or not complexity_types or not selected_models:
        return pd.DataFrame(), "Error: Please select at least one option from each category", None
    
    start_time = time.time()
    results_df = mock_process_documents(
        input_files, chunk_size, num_questions,
        question_types, complexity_types,
        difficulty_level, selected_models
    )
    processing_time = time.time() - start_time
    
    # Generate CSV file
    session_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}"
    csv_path = generate_csv_file(results_df, session_id)
    
    return (
        results_df, 
        f"Processing completed in {processing_time:.2f} seconds",
        csv_path if csv_path else None
    )

# Create custom theme
theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="indigo",
    neutral_hue="slate",
    font=gr.themes.GoogleFont("Inter"),
    radius_size=gr.themes.sizes.radius_sm,
).set(
    body_background_fill="*neutral_50",
    body_background_fill_dark="*neutral_950",
    button_primary_background_fill="*primary_600",
    button_primary_background_fill_hover="*primary_700",
    button_primary_text_color="white",
    button_primary_text_color_dark="white",
    block_label_text_weight="600",
    block_title_text_weight="600",
    input_background_fill="white",
    input_background_fill_dark="*neutral_800",
    input_border_color="*neutral_200",
    input_border_color_dark="*neutral_700",
)

# Create the Gradio interface
with gr.Blocks(
    title="Yourbench - Dynamic Question Generation",
    theme=theme,
    css="""
        .gradio-container {max-width: 1400px !important; margin-left: auto; margin-right: auto}
        .contain { display: flex; flex-direction: column; }
        .contain > * { flex: 1}
        .gap { margin-top: 1rem !important }
        footer {display: none !important}
        .citation-box { 
            background-color: #f8fafc;
            border: 1px solid #e2e8f0;
            border-radius: 0.5rem;
            padding: 1rem;
            margin-top: 2rem;
            font-family: monospace;
        }
        .citation-box pre {
            margin: 0;
            white-space: pre-wrap;
        }
        .main-panel { min-height: 600px }
        .output-panel { min-height: 400px }
        .checkbox-group { max-height: 200px; overflow-y: auto }
        .model-select { max-height: 150px }
        .download-btn { margin-top: 1rem !important }
    """
) as demo:
    # Header with description
    gr.Markdown("""
    # πŸ“š Yourbench: Dynamic Question Generation Tool
    
    Generate high-quality questions and answers from your documents using state-of-the-art language models.
    This tool helps create diverse question types with varying complexity levels, perfect for educational
    assessment and content understanding.
    """)
    
    with gr.Row():
        # Left column for configuration
        with gr.Column(scale=2, elem_classes="main-panel"):
            # Document Upload Section
            with gr.Group():
                gr.Markdown("### πŸ“„ Document Upload")
                input_files = gr.File(
                    label="Upload Documents (PDF/TXT)",
                    file_types=[".txt", ".pdf"],
                    file_count="multiple",
                    elem_id="file_upload",
                    scale=2
                )
            
            # Core Parameters Section
            with gr.Group():
                gr.Markdown("### βš™οΈ Core Parameters")
                with gr.Row():
                    chunk_size = gr.Slider(
                        minimum=100,
                        maximum=1000,
                        value=500,
                        step=50,
                        label="Chunk Size",
                        info="Number of tokens per chunk",
                        elem_id="chunk_size"
                    )
                    num_questions = gr.Slider(
                        minimum=1,
                        maximum=20,
                        value=5,
                        step=1,
                        label="Number of Questions",
                        info="How many questions to generate",
                        elem_id="num_questions"
                    )
                
                difficulty_level = gr.Slider(
                    minimum=1,
                    maximum=5,
                    value=3,
                    step=0.1,
                    label="Average Difficulty",
                    info="1: Easy, 5: Very Hard",
                    elem_id="difficulty"
                )
            
            with gr.Row():
                # Question Types Section
                with gr.Column():
                    gr.Markdown("### 🎯 Question Types")
                    question_types_dict = gr.CheckboxGroup(
                        choices=[
                            "Analytical", "Application Based", "Conceptual",
                            "Counterfactual", "Factual", "Open Ended",
                            "True False", "False Premise", "Clarification",
                            "Edge Case"
                        ],
                        value=["Analytical", "Factual", "Conceptual", "Application Based"],
                        label="Select Types",
                        elem_id="question_types",
                        elem_classes="checkbox-group"
                    )
                
                # Complexity and Models Section
                with gr.Column():
                    with gr.Group():
                        gr.Markdown("### πŸ”„ Complexity")
                        complexity_types_dict = gr.CheckboxGroup(
                            choices=["Single Shot", "Multi Hop"],
                            value=["Single Shot", "Multi Hop"],
                            label="Select Complexity",
                            elem_id="complexity_types"
                        )
                    
                    with gr.Group():
                        gr.Markdown("### πŸ€– Models")
                        model_selection_dict = gr.CheckboxGroup(
                            choices=[
                                "Mistral Large",
                                "Llama-3 70B",
                                "GPT-4",
                                "Claude 3.5 Sonnet",
                                "Gemini Pro"
                            ],
                            value=["Mistral Large", "GPT-4", "Claude 3.5 Sonnet"],
                            label="Select Models",
                            elem_id="models",
                            elem_classes="model-select"
                        )
            
            process_btn = gr.Button(
                "πŸš€ Generate Questions",
                variant="primary",
                size="lg",
                elem_id="generate_btn"
            )
        
        # Right column for outputs
        with gr.Column(scale=3, elem_classes="output-panel"):
            with gr.Group():
                gr.Markdown("### πŸ“Š Generated Questions")
                output_status = gr.Textbox(
                    label="Status",
                    elem_id="status"
                )
                output_table = gr.Dataframe(
                    headers=["question_type", "complexity", "question", "answer", "model", "difficulty"],
                    label="Questions and Answers",
                    elem_id="results_table",
                    wrap=True
                )
                csv_output = gr.File(
                    label="Download Results",
                    elem_id="csv_download",
                    elem_classes="download-btn",
                    interactive=False
                )
    
    # Instructions Section
    with gr.Accordion("πŸ“ Instructions", open=False):
        gr.Markdown("""
        1. **Upload Documents**: Support for .txt and .pdf files
        2. **Configure Parameters**:
           - Set chunk size for document processing
           - Choose number of questions to generate
           - Adjust difficulty level (1: Easy to 5: Very Hard)
        3. **Select Question Types**: Choose from various question categories
        4. **Set Complexity**: Single-shot or multi-hop reasoning
        5. **Choose Models**: Select AI models for ensemble generation
        6. Click 'πŸš€ Generate Questions' to start
        7. Download results as CSV for further use
        """)
    
    # Citation Section
    gr.Markdown("""
    ### πŸ“š Citation
    If you find this work helpful in your research or applications, please cite:
    """)
    
    with gr.Group(elem_classes="citation-box"):
        gr.Markdown("""```bibtex
@misc{yourbench2024,
    title={Yourbench: A Dynamic Question Generation Framework for Document Understanding},
    author={Your Team},
    year={2024},
    publisher={GitHub},
    journal={GitHub repository},
    howpublished={\\url{https://github.com/yourbench/yourbench}},
}
```""")
    
    # API Information
    gr.Markdown("""
    ### πŸ”Œ API Usage
    
    This tool can be used programmatically through its API. Here's how to interact with it:
    
    ```python
    import gradio_client
    
    client = gradio_client.Client("YOUR_SPACE_URL")
    
    result = client.predict(
        ["document.pdf"],                      # Input files
        500,                                   # Chunk size
        5,                                     # Number of questions
        ["Analytical", "Factual"],             # Question types
        ["Single Shot"],                       # Complexity types
        3.0,                                   # Difficulty level
        ["GPT-4", "Claude 3.5 Sonnet"],        # Models
        api_name="/predict"
    )
    ```
    
    Replace `YOUR_SPACE_URL` with the actual deployment URL. The API endpoint accepts the same parameters
    as the web interface and returns a tuple containing the results DataFrame, status message, and CSV file path.
    """)
    
    
    # Event handler
    process_btn.click(
        process_files,
        inputs=[
            input_files, chunk_size, num_questions,
            question_types_dict, complexity_types_dict,
            difficulty_level, model_selection_dict
        ],
        outputs=[output_table, output_status, csv_output]
    )

if __name__ == "__main__":
    demo.launch(share=True)