Spaces:
Build error
Build error
File size: 6,421 Bytes
357b0b8 6d88167 357b0b8 f9d31ee 357b0b8 96ac3ab 357b0b8 17476c1 357b0b8 a78bf29 6d88167 a78bf29 6d88167 a78bf29 357b0b8 f9d31ee f58917e f9d31ee 6d88167 357b0b8 6d88167 357b0b8 9cde513 357b0b8 9cde513 6d88167 862e020 6d88167 862e020 6d88167 862e020 6d88167 862e020 6d88167 a78bf29 6d88167 5de821f 6d88167 a78bf29 6d88167 357b0b8 6d88167 f58917e 6d88167 f58917e 862e020 f58917e 862e020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import matplotlib.pyplot as plt
import nmslib
import numpy as np
import os
import requests
import streamlit as st
from PIL import Image
from transformers import CLIPProcessor, FlaxCLIPModel
import utils
BASELINE_MODEL = "openai/clip-vit-base-patch32"
MODEL_PATH = "flax-community/clip-rsicd-v2"
IMAGE_VECTOR_FILE = "./vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv"
IMAGES_DIR = "./images"
CAPTIONS_FILE = os.path.join(IMAGES_DIR, "test-captions.json")
@st.cache(allow_output_mutation=True)
def load_example_images():
example_images = {}
image_names = os.listdir(IMAGES_DIR)
for image_name in image_names:
if image_name.find("_") < 0:
continue
image_class = image_name.split("_")[0]
if image_class in example_images.keys():
example_images[image_class].append(image_name)
else:
example_images[image_class] = [image_name]
example_image_list = sorted([v[np.random.randint(0, len(v))]
for k, v in example_images.items()][0:10])
return example_image_list
def get_image_thumbnail(image_filename):
image = Image.open(os.path.join(IMAGES_DIR, image_filename))
image = image.resize((100, 100))
return image
def download_and_prepare_image(image_url):
try:
image_raw = requests.get(image_url, stream=True,).raw
image = Image.open(image_raw).convert("RGB")
width, height = image.size
resize_mult = width / 224 if width < height else height / 224
image = image.resize((int(width // resize_mult),
int(height // resize_mult)))
width, height = image.size
left = int((width - 224) // 2)
top = int((height - 224) // 2)
right = int((width + 224) // 2)
bottom = int((height + 224) // 2)
image = image.crop((left, top, right, bottom))
return image
except Exception as e:
return None
def app():
filenames, index = utils.load_index(IMAGE_VECTOR_FILE)
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL)
image2caption = utils.load_captions(CAPTIONS_FILE)
example_image_list = load_example_images()
st.title("Retrieve Images given Images")
st.markdown("""
This demo shows the image to image retrieval capabilities of this model, i.e.,
given an image file name as a query, we use our fine-tuned CLIP model
to project the query image to the image/caption embedding space and search
for nearby images (by cosine similarity) in this space.
Our fine-tuned CLIP model was previously used to generate image vectors for
our demo, and NMSLib was used for fast vector access.
Here are some randomly generated image files from our corpus, that you can
find similar images for by selecting the button below it. Alternatively you
can upload your own image from the Internet.
""")
suggest_idx = -1
col0, col1, col2, col3, col4 = st.columns(5)
col0.image(get_image_thumbnail(example_image_list[0]))
col1.image(get_image_thumbnail(example_image_list[1]))
col2.image(get_image_thumbnail(example_image_list[2]))
col3.image(get_image_thumbnail(example_image_list[3]))
col4.image(get_image_thumbnail(example_image_list[4]))
col0t, col1t, col2t, col3t, col4t = st.columns(5)
with col0t:
if st.button("Image-1"):
suggest_idx = 0
with col1t:
if st.button("Image-2"):
suggest_idx = 1
with col2t:
if st.button("Image-3"):
suggest_idx = 2
with col3t:
if st.button("Image-4"):
suggest_idx = 3
with col4t:
if st.button("Image-5"):
suggest_idx = 4
col5, col6, col7, col8, col9 = st.columns(5)
col5.image(get_image_thumbnail(example_image_list[5]))
col6.image(get_image_thumbnail(example_image_list[6]))
col7.image(get_image_thumbnail(example_image_list[7]))
col8.image(get_image_thumbnail(example_image_list[8]))
col9.image(get_image_thumbnail(example_image_list[9]))
col5t, col6t, col7t, col8t, col9t = st.columns(5)
with col5t:
if st.button("Image-6"):
suggest_idx = 5
with col6t:
if st.button("Image-7"):
suggest_idx = 6
with col7t:
if st.button("Image-8"):
suggest_idx = 7
with col8t:
if st.button("Image-9"):
suggest_idx = 8
with col9t:
if st.button("Image-10"):
suggest_idx = 9
image_url = st.text_input(
"OR provide an image URL",
value="https://static.eos.com/wp-content/uploads/2019/04/Main.jpg")
submit_button = st.button("Find Similar")
if submit_button or suggest_idx > -1:
image_name = None
if suggest_idx > -1:
image_name = example_image_list[suggest_idx]
image = Image.fromarray(plt.imread(os.path.join(IMAGES_DIR, image_name)))
else:
image = download_and_prepare_image(image_url)
st.image(image, caption="Input Image")
st.markdown("---")
if image is None:
st.error("Image could not be downloaded, please try another one!")
else:
inputs = processor(images=image, return_tensors="jax", padding=True)
query_vec = model.get_image_features(**inputs)
query_vec = np.asarray(query_vec)
ids, distances = index.knnQuery(query_vec, k=11)
result_filenames = [filenames[id] for id in ids]
rank = 0
for result_filename, score in zip(result_filenames, distances):
if image_name is not None and result_filename == image_name:
continue
caption = "{:s} (score: {:.3f})".format(result_filename, 1.0 - score)
col1, col2, col3 = st.columns([2, 10, 10])
col1.markdown("{:d}.".format(rank + 1))
col2.image(Image.open(os.path.join(IMAGES_DIR, result_filename)),
caption=caption)
caption_text = []
for caption in image2caption[result_filename]:
caption_text.append("* {:s}\n".format(caption))
col3.markdown("".join(caption_text))
rank += 1
st.markdown("---")
suggest_idx = -1
|