File size: 1,779 Bytes
f4807cc
55464d0
f4807cc
8d37a8d
55464d0
f4807cc
8d37a8d
55464d0
8d37a8d
4e9d310
 
 
 
 
8d37a8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4807cc
8d37a8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr
from transformers import pipeline

# ๊ฐ์„ฑ ๋ถ„์„ ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
sentiment = pipeline("sentiment-analysis")

# ์‚ฌ์šฉ์ž ์ž…๋ ฅ์— ๋Œ€ํ•œ ๊ฐ์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ˜ํ™˜ํ•˜๋Š” ํ•จ์ˆ˜
def get_sentiment(์ž…๋ ฅ):
    # ๊ฐ์„ฑ ๋ถ„์„ ์‹คํ–‰
    return sentiment(์ž…๋ ฅ)


gr.Interface(fn=ask_question, inputs="์ž…๋ ฅ", outputs="output", title="Sentiment Analysis", description="").launch()


# import gradio as gr
# from transformers import pipeline

# sentiment = pipeline("sentiment-analysis")

# def get_sentiment(์ž…๋ ฅ):
#     # from transformers import AutoTokenizer, AutoModelForCausalLM
#     # model_name = "heegyu/koalpaca-355m"
#     # tokenizer = AutoTokenizer.from_pretrained(model_name)
#     # tokenizer.truncation_side = "right"
#     # model = AutoModelForCausalLM.from_pretrained(model_name)
#     return sentiment(์ž…๋ ฅ)

# def get_response(output):
#     context = f"<usr>{context}\n<sys>"
#     inputs = tokenizer(
#         context, 
#         truncation=True,
#         max_length=512,
#         return_tensors="pt")
    
#     generation_args = dict(
#         max_length=256,
#         min_length=64,
#         eos_token_id=2,
#         do_sample=True,
#         top_p=1.0,
#         early_stopping=True
#     )

#     outputs = model.generate(**inputs, **generation_args)
#     response = tokenizer.decode(outputs[0])
#     print(context)
#     print(response)
#     response = response[len(context):].replace("</s>", "")

#     return response

# model, tokenizer = get_pipe()

# def ask_question(input_):
#     response = get_response(tokenizer, model, input_)
#     return response

# gr.Interface(fn=ask_question, inputs="text", outputs="text", title="KoAlpaca-355M", description="ํ•œ๊ตญ์–ด๋กœ ์งˆ๋ฌธํ•˜์„ธ์š”.").launch()