File size: 49,362 Bytes
4106305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
from typing import TypedDict, List, Dict, Optional, Any
from typing_extensions import List, TypedDict

from dotenv import load_dotenv
import chainlit as cl
import os
import asyncio
import base64
import requests
import time
import datetime
import random
import string
import fpdf
from pathlib import Path

# Re-enable the Tavily search tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.documents import Document
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage, AIMessage
from langchain_openai import ChatOpenAI
# from langchain_core.language_models import FakeListLLM  # Add FakeListLLM for testing
from langgraph.graph import StateGraph, END
from openai import OpenAI, AsyncOpenAI

# Import InsightFlow components
from insight_state import InsightFlowState
from utils.persona import PersonaFactory, PersonaReasoning

# Load environment variables
load_dotenv()

# Initialize OpenAI client for DALL-E
openai_client = AsyncOpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

# --- INITIALIZE CORE COMPONENTS ---

# Re-enable search tool initialization
tavily_tool = TavilySearchResults(max_results=3)

# Initialize LLMs with optimized settings for speed
llm_planner = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.1, request_timeout=20)
llm_analytical = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.2, request_timeout=20)
llm_scientific = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.3, request_timeout=20)
llm_philosophical = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.4, request_timeout=20)
llm_factual = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.3, request_timeout=20)
llm_metaphorical = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.6, request_timeout=20)
llm_futuristic = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.5, request_timeout=20)
llm_synthesizer = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.2, request_timeout=20)

# Direct mode LLM with slightly higher quality
llm_direct = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.3, request_timeout=25)

# --- SYSTEM PROMPTS ---

PLANNER_SYSPROMPT = """You are an expert planner agent that coordinates research across multiple personas.
Given a user query, your task is to create a research plan with specific sub-tasks for each selected persona.
Break down complex queries into specific tasks that leverage each persona's unique perspective.
"""

SYNTHESIZER_SYSPROMPT = """You are a synthesis expert that combines multiple perspectives into a coherent response.
Given different persona perspectives on the same query, create a unified response that:
1. Highlights unique insights from each perspective
2. Notes areas of agreement and divergence
3. Organizes information logically for the user
Present the final response in a cohesive format that integrates all perspectives.
"""

DIRECT_SYSPROMPT = """You are a highly intelligent AI assistant that provides clear, direct, and helpful answers.
Your responses should be accurate, concise, and well-reasoned.
"""

# --- LANGGRAPH NODES FOR INSIGHTFLOW AI ---

async def run_planner_agent(state: InsightFlowState) -> InsightFlowState:
    """Plan the research approach for multiple personas"""
    query = state["query"]
    selected_personas = state["selected_personas"]
    
    # For the MVP implementation, we'll use a simplified planning approach
    # that just assigns the same query to each selected persona
    # In a full implementation, the planner would create custom tasks for each persona
    
    print(f"Planning research for query: {query}")
    print(f"Selected personas: {selected_personas}")
    
    state["current_step_name"] = "execute_persona_tasks"
    return state

async def execute_persona_tasks(state: InsightFlowState) -> InsightFlowState:
    """Execute tasks for each selected persona"""
    query = state["query"]
    selected_personas = state["selected_personas"]
    persona_factory = cl.user_session.get("persona_factory")
    
    # Initialize responses dict if not exists
    if "persona_responses" not in state:
        state["persona_responses"] = {}
    
    print(f"Executing persona tasks for {len(selected_personas)} personas")
    
    # Get progress message if it exists
    progress_msg = cl.user_session.get("progress_msg")
    total_personas = len(selected_personas)
    
    # Process each persona with timeout safety
    # Using asyncio.gather to run multiple persona tasks in parallel for speed
    persona_tasks = []
    
    # First, create all personas and tasks
    for persona_id in selected_personas:
        persona = persona_factory.create_persona(persona_id)
        if persona:
            # Add progress message for user feedback
            await cl.Message(content=f"Generating insights from {persona_id} perspective...").send()
            # Create task to run in parallel
            task = generate_perspective_with_timeout(persona, query)
            persona_tasks.append((persona_id, task))
    
    # Run all perspective generations in parallel
    completed = 0
    for persona_id, task in persona_tasks:
        try:
            # Update dynamic progress if progress message exists
            if progress_msg:
                percent_done = 40 + int((completed / total_personas) * 40)
                await update_message(
                    progress_msg, 
                    f"⏳ Generating perspective from {persona_id} ({percent_done}%)..."
                )
            
            response = await task
            state["persona_responses"][persona_id] = response
            print(f"Perspective generated for {persona_id}")
            
            # Increment completed count
            completed += 1
            
        except Exception as e:
            print(f"Error getting {persona_id} perspective: {e}")
            state["persona_responses"][persona_id] = f"Could not generate perspective: {str(e)}"
            
            # Still increment completed count
            completed += 1
    
    state["current_step_name"] = "synthesize_responses"
    return state

async def generate_perspective_with_timeout(persona, query):
    """Generate a perspective with timeout handling"""
    try:
        # Set a timeout for each perspective generation
        response = await asyncio.wait_for(
            cl.make_async(persona.generate_perspective)(query),
            timeout=30  # 30-second timeout (reduced for speed)
        )
        return response
    except asyncio.TimeoutError:
        # Handle timeout by providing a simplified response
        return f"The perspective generation timed out. This may be due to high API traffic or complexity of the query."
    except Exception as e:
        # Handle other errors
        return f"Error generating perspective: {str(e)}"

async def synthesize_responses(state: InsightFlowState) -> InsightFlowState:
    """Combine perspectives from different personas"""
    query = state["query"]
    persona_responses = state["persona_responses"]
    
    if not persona_responses:
        state["synthesized_response"] = "No persona perspectives were generated."
        state["current_step_name"] = "present_results"
        return state

    print(f"Synthesizing responses from {len(persona_responses)} personas")
    
    # Add progress message for user feedback
    await cl.Message(content="Synthesizing insights from all perspectives...").send()
    
    # Prepare input for synthesizer
    perspectives_text = ""
    for persona_id, response in persona_responses.items():
        perspectives_text += f"\n\n{persona_id.capitalize()} Perspective:\n{response}"
    
    # Use LLM to synthesize with timeout
    messages = [
        SystemMessage(content=SYNTHESIZER_SYSPROMPT),
        HumanMessage(content=f"Query: {query}\n\nPerspectives:{perspectives_text}\n\nPlease synthesize these perspectives into a coherent response.")
    ]
    
    try:
        # Set a timeout for the synthesis
        synthesizer_response = await asyncio.wait_for(
            llm_synthesizer.ainvoke(messages),
            timeout=30  # 30-second timeout (reduced for speed)
        )
        state["synthesized_response"] = synthesizer_response.content
        print("Synthesis complete")
    except asyncio.TimeoutError:
        # Handle timeout for synthesis
        state["synthesized_response"] = "The synthesis of perspectives timed out. Here are the individual perspectives instead."
        print("Synthesis timed out")
    except Exception as e:
        print(f"Error synthesizing perspectives: {e}")
        state["synthesized_response"] = f"Error synthesizing perspectives: {str(e)}"
    
    state["current_step_name"] = "generate_visualization"
    return state

async def generate_dalle_image(prompt: str) -> Optional[str]:
    """Generate a DALL-E image and return the URL"""
    try:
        # Create a detailed prompt for hand-drawn style visualization
        full_prompt = f"Create a hand-drawn style visual note or sketch that represents: {prompt}. Make it look like a thoughtful drawing with annotations and key concepts highlighted. Include multiple perspectives connected together in a coherent visualization. Style: thoughtful hand-drawn sketch, notebook style with labels."
        
        # Call DALL-E to generate the image
        response = await openai_client.images.generate(
            model="dall-e-3",
            prompt=full_prompt,
            size="1024x1024",
            quality="standard",
            n=1
        )
        
        # Return the URL of the generated image
        return response.data[0].url
    except Exception as e:
        print(f"DALL-E image generation failed: {e}")
        return None

async def generate_visualization(state: InsightFlowState) -> InsightFlowState:
    """Generate a Mermaid diagram from the multiple perspectives"""
    # Get progress message if available and update it
    progress_msg = cl.user_session.get("progress_msg")
    if progress_msg:
        await update_message(progress_msg, "⏳ Generating visual representation (90%)...")
    
    # Skip if no synthesized response or no personas
    if not state.get("synthesized_response") or not state.get("persona_responses"):
        state["current_step_name"] = "present_results"
        return state
    
    # Get visualization settings
    show_visualization = cl.user_session.get("show_visualization", True)
    visual_only_mode = cl.user_session.get("visual_only_mode", False)
    
    # Determine if we should generate visualizations (either mode is on)
    should_visualize = show_visualization or visual_only_mode
    
    # Generate mermaid diagram if visualizations are enabled
    if should_visualize:
        try:
            # Create the absolute simplest Mermaid diagram possible
            query = state.get("query", "Query")
            query_short = query[:20] + "..." if len(query) > 20 else query
            
            # Generate the most basic diagram structure
            mermaid_text = f"""graph TD
        Q["{query_short}"]
        S["Synthesized View"]"""
            
            # Add each persona with a simple connection
            for i, persona in enumerate(state.get("persona_responses", {}).keys()):
                persona_short = persona.capitalize()
                node_id = f"P{i+1}"
                mermaid_text += f"""
        {node_id}["{persona_short}"]
        Q --> {node_id}
        {node_id} --> S"""
            
            # Store the simplified mermaid code
            state["visualization_code"] = mermaid_text
            print("Visualization generation complete with simplified diagram")
            
        except Exception as e:
            print(f"Error generating visualization: {e}")
            state["visualization_code"] = None
    
        # Generate DALL-E image if visualizations are enabled
        try:
            # Update progress message
            if progress_msg:
                await update_message(progress_msg, "⏳ Generating hand-drawn visualization (92%)...")
            
            # Create a prompt from the synthesized response
            image_prompt = state.get("synthesized_response", "")
            if len(image_prompt) > 500:
                image_prompt = image_prompt[:500]  # Limit prompt length
            
            # Add the query for context
            image_prompt = f"Query: {state.get('query', '')}\n\nSynthesis: {image_prompt}"
            
            # Generate the image
            image_url = await generate_dalle_image(image_prompt)
            state["visualization_image_url"] = image_url
            print("DALL-E visualization generated successfully")
        except Exception as e:
            print(f"Error generating DALL-E image: {e}")
            state["visualization_image_url"] = None
    
    state["current_step_name"] = "present_results"
    return state

async def present_results(state: InsightFlowState) -> InsightFlowState:
    """Present the final results to the user"""
    synthesized_response = state.get("synthesized_response", "No synthesized response available.")
    
    print("Presenting results to user")
    
    # Ensure progress is at 100% before showing results
    progress_msg = cl.user_session.get("progress_msg")
    if progress_msg:
        await update_message(progress_msg, "✅ Process complete (100%)")
    
    # Get visualization settings
    visual_only_mode = cl.user_session.get("visual_only_mode", False)
    show_visualization = cl.user_session.get("show_visualization", True)
    
    # Check if either visualization mode is enabled
    visualization_enabled = visual_only_mode or show_visualization
    
    # Determine panel mode
    panel_mode = "Research Assistant" if state["panel_type"] == "research" else "Multi-Persona Discussion"
    
    # Check if we have visualizations available
    has_mermaid = state.get("visualization_code") is not None
    has_dalle_image = state.get("visualization_image_url") is not None
    has_any_visualization = has_mermaid or has_dalle_image
    
    # Send text response if we're not in visual-only mode OR if no visualizations are available
    if not visual_only_mode or (visual_only_mode and not has_any_visualization):
        panel_indicator = f"**{panel_mode} Insights:**\n\n"
        # In visual-only mode with no visualizations, add an explanation
        if visual_only_mode and not has_any_visualization:
            panel_indicator = f"**{panel_mode} Insights (No visualizations available):**\n\n"
        await cl.Message(content=panel_indicator + synthesized_response).send()
    
    # Display DALL-E generated image if available and visualizations are enabled
    if has_dalle_image and visualization_enabled:
        try:
            # Add a title for the image
            if visual_only_mode:
                image_title = f"**Hand-drawn Visualization of {panel_mode} Insights:**"
            else:
                image_title = "**Hand-drawn Visualization:**"
            
            # Send the title
            await cl.Message(content=image_title).send()
            
            # Send the image URL as markdown
            image_url = state["visualization_image_url"]
            image_markdown = f"![DALL-E Visualization]({image_url})"
            await cl.Message(content=image_markdown).send()
            
        except Exception as e:
            print(f"Error displaying DALL-E image: {e}")
            # If in visual-only mode and image fails but we have no other visualization or text shown
            if visual_only_mode and not has_mermaid and state.get("text_fallback_shown", False) is not True:
                panel_indicator = f"**{panel_mode} Insights (Image generation failed):**\n\n"
                await cl.Message(content=panel_indicator + synthesized_response).send()
                state["text_fallback_shown"] = True
    
    # Display Mermaid diagram if available and visualizations are enabled
    if has_mermaid and visualization_enabled:
        try:
            # Add a brief summary in visual-only mode
            if visual_only_mode:
                diagram_title = f"**Concept Map of {panel_mode} Insights:**"
            else:
                diagram_title = "**Concept Map:**"
            
            # First send a title message
            await cl.Message(content=diagram_title).send()
            
            # Try to render the mermaid diagram
            try:
                # Ensure the diagram is extremely simple and valid
                mermaid_code = state['visualization_code']
                
                # Fallback to a guaranteed working diagram if rendering fails
                if not mermaid_code or len(mermaid_code) < 10:
                    mermaid_code = """graph TD
    A[Query] --> B[Analysis]
    B --> C[Result]"""
                
                # Create the mermaid block with proper syntax
                # Each line needs to be separate without extra indentation
                mermaid_block = "```mermaid\n"
                for line in mermaid_code.split('\n'):
                    mermaid_block += line.strip() + "\n"
                mermaid_block += "```"
                
                # Send the diagram as its own message
                await cl.Message(content=mermaid_block).send()
            except Exception as diagram_err:
                print(f"Error rendering diagram: {diagram_err}")
                # Try an ultra-simple fallback diagram
                ultra_simple = """```mermaid
graph TD
    A[Start] --> B[End]
```"""
                await cl.Message(content=ultra_simple).send()
            
            # Send the footer only if we have visualizations
            if has_any_visualization:
                await cl.Message(content="_Visualizations represent the key relationships between concepts from different perspectives._").send()
            
        except Exception as e:
            print(f"Error displaying visualization: {e}")
            # If in visual-only mode and visualization fails but no image shown yet and no text shown yet
            if visual_only_mode and not has_dalle_image and state.get("text_fallback_shown", False) is not True:
                panel_indicator = f"**{panel_mode} Insights (Visualization failed):**\n\n"
                await cl.Message(content=panel_indicator + synthesized_response).send()
                # Mark that we showed the fallback text to avoid duplicates
                state["text_fallback_shown"] = True
    
    # Check if user wants to see individual perspectives (not in visual-only mode)
    if cl.user_session.get("show_perspectives", True) and not visual_only_mode:
        # Show individual perspectives as separate messages instead of expandable elements
        for persona_id, response in state["persona_responses"].items():
            persona_name = persona_id.capitalize()
            
            # Get proper display name from config if available
            persona_factory = cl.user_session.get("persona_factory")
            if persona_factory:
                config = persona_factory.get_config(persona_id)
                if config and "name" in config:
                    persona_name = config["name"]
            
            # Just send the perspective as a message with a header
            perspective_message = f"**{persona_name}'s Perspective:**\n\n{response}"
            await cl.Message(content=perspective_message).send()
    
    state["current_step_name"] = "END"
    return state

# --- LANGGRAPH SETUP FOR INSIGHTFLOW AI ---
# Now define the graph with the functions we've defined above
insight_graph_builder = StateGraph(InsightFlowState)

# Add all nodes
insight_graph_builder.add_node("planner_agent", run_planner_agent)
insight_graph_builder.add_node("execute_persona_tasks", execute_persona_tasks)
insight_graph_builder.add_node("synthesize_responses", synthesize_responses)
insight_graph_builder.add_node("generate_visualization", generate_visualization)
insight_graph_builder.add_node("present_results", present_results)

# Add edges
insight_graph_builder.add_edge("planner_agent", "execute_persona_tasks")
insight_graph_builder.add_edge("execute_persona_tasks", "synthesize_responses")
insight_graph_builder.add_edge("synthesize_responses", "generate_visualization")
insight_graph_builder.add_edge("generate_visualization", "present_results")
insight_graph_builder.add_edge("present_results", END)

# Set entry point
insight_graph_builder.set_entry_point("planner_agent")

# Compile the graph
insight_flow_graph = insight_graph_builder.compile()
print("InsightFlow graph compiled successfully")

# --- DIRECT QUERY FUNCTION ---
async def direct_query(query: str):
    """Process a direct query without using multiple personas"""
    messages = [
        SystemMessage(content=DIRECT_SYSPROMPT),
        HumanMessage(content=query)
    ]
    
    try:
        # Direct query to LLM with streaming
        async for chunk in llm_direct.astream(messages):
            if chunk.content:
                # Yield chunk for streaming UI updates
                yield chunk.content
    except Exception as e:
        error_msg = f"Error processing direct query: {str(e)}"
        yield error_msg

# Helper function to display help information
async def display_help():
    """Display all available commands"""
    help_text = """
# InsightFlow AI Commands

**Persona Management:**
- `/add persona_name` - Add a persona to your research team (e.g., `/add factual`)
- `/remove persona_name` - Remove a persona from your team (e.g., `/remove philosophical`)
- `/list` - Show all available personas
- `/team` - Show your current team and settings

**Speed and Mode Options:**
- `/direct on|off` - Toggle direct LLM mode (bypasses multi-persona system)
- `/quick on|off` - Toggle quick mode (uses fewer personas)
- `/perspectives on|off` - Toggle showing individual perspectives
- `/visualization on|off` - Toggle showing visualizations (Mermaid diagrams & DALL-E images)
- `/visual_only on|off` - Show only visualizations without text (faster)

**Export Options:**
- `/export_md` - Export the current insight analysis to a markdown file
- `/export_pdf` - Export the current insight analysis to a PDF file

**System Commands:**
- `/help` - Show this help message

**Available Personas:**
- analytical - Logical problem-solving
- scientific - Evidence-based reasoning
- philosophical - Meaning and implications
- factual - Practical information 
- metaphorical - Creative analogies
- futuristic - Forward-looking possibilities
"""
    await cl.Message(content=help_text).send()

# Export functions
async def generate_random_id(length=8):
    """Generate a random ID for export filenames"""
    return ''.join(random.choices(string.ascii_lowercase + string.digits, k=length))

async def export_to_markdown(state: InsightFlowState):
    """Export the current insight analysis to a markdown file"""
    if not state.get("synthesized_response"):
        return None, "No analysis available to export. Please run a query first."
    
    # Create exports directory if it doesn't exist
    Path("./exports").mkdir(exist_ok=True)
    
    # Generate a unique filename with timestamp
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    random_id = await generate_random_id()
    filename = f"exports/insightflow_analysis_{timestamp}_{random_id}.md"
    
    # Prepare content
    query = state.get("query", "No query specified")
    synthesized = state.get("synthesized_response", "No synthesized response")
    panel_mode = "Research Assistant" if state["panel_type"] == "research" else "Multi-Persona Discussion"
    
    # Create markdown content
    md_content = f"""# InsightFlow AI Analysis
*Generated on: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}*

## Query
{query}

## {panel_mode} Insights
{synthesized}

"""
    
    # Add perspectives if available
    if state.get("persona_responses"):
        md_content += "## Individual Perspectives\n\n"
        for persona_id, response in state["persona_responses"].items():
            persona_name = persona_id.capitalize()
            md_content += f"### {persona_name}'s Perspective\n{response}\n\n"
    
    # Add visualization section header
    md_content += "## Visualizations\n\n"
    
    # Add DALL-E image if available
    if state.get("visualization_image_url"):
        md_content += f"### Hand-drawn Visual Representation\n\n"
        md_content += f"![InsightFlow Visualization]({state['visualization_image_url']})\n\n"
    
    # Add visualization if available
    if state.get("visualization_code"):
        md_content += "### Concept Map\n\n```mermaid\n"
        for line in state["visualization_code"].split('\n'):
            md_content += line.strip() + "\n"
        md_content += "```\n\n"
        md_content += "*Note: The mermaid diagram will render in applications that support mermaid syntax, like GitHub or VS Code with appropriate extensions.*\n\n"
    
    # Add footer
    md_content += "---\n*Generated by InsightFlow AI*"
    
    # Write to file
    try:
        with open(filename, "w", encoding="utf-8") as f:
            f.write(md_content)
        return filename, None
    except Exception as e:
        return None, f"Error exporting to markdown: {str(e)}"

async def export_to_pdf(state: InsightFlowState):
    """Export the current insight analysis to a PDF file"""
    if not state.get("synthesized_response"):
        return None, "No analysis available to export. Please run a query first."
    
    # Create exports directory if it doesn't exist
    Path("./exports").mkdir(exist_ok=True)
    
    # Generate a unique filename with timestamp
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    random_id = await generate_random_id()
    filename = f"exports/insightflow_analysis_{timestamp}_{random_id}.pdf"
    
    try:
        # Create PDF
        pdf = fpdf.FPDF()
        pdf.add_page()
        
        # Add title
        pdf.set_font('Arial', 'B', 16)
        pdf.cell(0, 10, 'InsightFlow AI Analysis', 0, 1, 'C')
        pdf.set_font('Arial', 'I', 10)
        pdf.cell(0, 10, f"Generated on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", 0, 1, 'C')
        pdf.ln(10)
        
        # Add query
        pdf.set_font('Arial', 'B', 12)
        pdf.cell(0, 10, 'Query:', 0, 1)
        pdf.set_font('Arial', '', 11)
        query = state.get("query", "No query specified")
        pdf.multi_cell(0, 10, query)
        pdf.ln(5)
        
        # Add synthesized insights
        panel_mode = "Research Assistant" if state["panel_type"] == "research" else "Multi-Persona Discussion"
        pdf.set_font('Arial', 'B', 12)
        pdf.cell(0, 10, f'{panel_mode} Insights:', 0, 1)
        pdf.set_font('Arial', '', 11)
        synthesized = state.get("synthesized_response", "No synthesized response")
        pdf.multi_cell(0, 10, synthesized)
        pdf.ln(10)
        
        # Add perspectives if available
        if state.get("persona_responses"):
            pdf.set_font('Arial', 'B', 12)
            pdf.cell(0, 10, 'Individual Perspectives:', 0, 1)
            pdf.ln(5)
            
            for persona_id, response in state["persona_responses"].items():
                persona_name = persona_id.capitalize()
                pdf.set_font('Arial', 'B', 11)
                pdf.cell(0, 10, f"{persona_name}'s Perspective:", 0, 1)
                pdf.set_font('Arial', '', 11)
                pdf.multi_cell(0, 10, response)
                pdf.ln(5)
        
        # Add visualizations section
        pdf.add_page()
        pdf.set_font('Arial', 'B', 14)
        pdf.cell(0, 10, 'Visualizations', 0, 1, 'C')
        pdf.ln(5)
        
        # Add DALL-E image if available
        if state.get("visualization_image_url"):
            try:
                # Add header for the visualization
                pdf.set_font('Arial', 'B', 12)
                pdf.cell(0, 10, 'Hand-drawn Visual Representation:', 0, 1)
                pdf.ln(5)
                
                # Download the image
                image_url = state.get("visualization_image_url")
                image_path = f"exports/temp_image_{timestamp}_{random_id}.jpg"
                
                # Download the image using requests
                response = requests.get(image_url, stream=True)
                if response.status_code == 200:
                    with open(image_path, 'wb') as img_file:
                        for chunk in response.iter_content(1024):
                            img_file.write(chunk)
                    
                    # Add the image to PDF with proper sizing
                    pdf.image(image_path, x=10, y=None, w=190)
                    pdf.ln(5)
                    
                    # Remove the temporary image
                    os.remove(image_path)
                else:
                    pdf.multi_cell(0, 10, "Could not download the visualization image.")
            except Exception as img_error:
                pdf.multi_cell(0, 10, f"Error including visualization image: {str(img_error)}")
        
        # Add mermaid diagram if available
        if state.get("visualization_code"):
            pdf.ln(10)
            pdf.set_font('Arial', 'B', 12)
            pdf.cell(0, 10, 'Concept Map Structure:', 0, 1)
            pdf.ln(5)
            
            # Extract relationships from the mermaid code
            mermaid_code = state.get("visualization_code", "")
            pdf.set_font('Arial', 'I', 10)
            pdf.multi_cell(0, 10, "Below is a text representation of the concept relationships:")
            pdf.ln(5)
            
            # Add a text representation of the diagram
            try:
                # Parse the mermaid code to extract relationships
                relationships = []
                for line in mermaid_code.split('\n'):
                    line = line.strip()
                    if '-->' in line:
                        parts = line.split('-->')
                        if len(parts) == 2:
                            source = parts[0].strip()
                            target = parts[1].strip()
                            relationships.append(f"• {source} connects to {target}")
                
                if relationships:
                    pdf.set_font('Arial', '', 10)
                    for rel in relationships:
                        pdf.multi_cell(0, 8, rel)
                else:
                    # Add a simplified representation of the concept map
                    pdf.multi_cell(0, 10, "The concept map shows relationships between the query and multiple perspectives, leading to a synthesized view.")
            except Exception as diagram_error:
                pdf.multi_cell(0, 10, f"Error parsing concept map: {str(diagram_error)}")
                pdf.multi_cell(0, 10, "The concept map shows the relationships between different perspectives on the topic.")
        
        # Add footer
        pdf.set_y(-15)
        pdf.set_font('Arial', 'I', 8)
        pdf.cell(0, 10, 'Generated by InsightFlow AI', 0, 0, 'C')
        
        # Output PDF
        pdf.output(filename)
        return filename, None
    except Exception as e:
        return None, f"Error exporting to PDF: {str(e)}"

# --- CHAINLIT INTEGRATION ---
# Super simplified version with command-based persona selection

@cl.on_chat_start
async def start_chat():
    """Initialize the InsightFlow AI session"""
    print("InsightFlow AI chat started: Initializing session...")
    
    # Initialize persona factory and load configs
    persona_factory = PersonaFactory(config_dir="persona_configs")
    cl.user_session.set("persona_factory", persona_factory)
    
    # Initialize state with default personas
    initial_state = InsightFlowState(
        panel_type="research",
        query="",
        selected_personas=["analytical", "scientific", "philosophical"],
        persona_responses={},
        synthesized_response=None,
        current_step_name="awaiting_query",
        error_message=None
    )
    
    # Initialize LangGraph
    cl.user_session.set("insight_state", initial_state)
    cl.user_session.set("insight_graph", insight_flow_graph)
    
    # Set default options
    cl.user_session.set("direct_mode", False)  # Default to InsightFlow mode
    cl.user_session.set("show_perspectives", True)  # Default to showing all perspectives
    cl.user_session.set("quick_mode", False)  # Default to normal speed
    cl.user_session.set("show_visualization", True)  # Default to showing visualizations
    cl.user_session.set("visual_only_mode", False)  # Default to showing both text and visuals
    
    # Welcome message with command instructions
    welcome_message = """
# Welcome to InsightFlow AI

This assistant provides multiple perspectives on your questions using specialized personas.

**Your current research team:**
- Analytical reasoning
- Scientific reasoning
- Philosophical reasoning

Type `/help` to see all available commands.
"""
    await cl.Message(content=welcome_message).send()
    
    # Display help initially
    await display_help()

# Update function for Chainlit 2.5.5 compatibility
async def update_message(message, new_content):
    """Update a message in a way that's compatible with Chainlit 2.5.5"""
    try:
        # First try the direct content update method (newer versions)
        await message.update(content=new_content)
    except TypeError:
        # Fall back to older method for Chainlit 2.5.5
        message.content = new_content
        await message.update()

@cl.on_message
async def handle_message(message: cl.Message):
    """Handle user messages"""
    state = cl.user_session.get("insight_state")
    graph = cl.user_session.get("insight_graph")
    
    if not state or not graph:
        await cl.Message(content="Session error. Please refresh the page.").send()
        return
    
    # Check for commands to change personas or settings
    msg_content = message.content.strip()
    
    # Handle commands
    if msg_content.startswith('/'):
        parts = msg_content.split()
        command = parts[0].lower()
        
        if command == '/help':
            # Show help text
            await display_help()
            return
            
        elif command == '/list':
            # List available personas
            persona_list = """
**Available personas:**
- analytical - Logical problem-solving
- scientific - Evidence-based reasoning
- philosophical - Meaning and implications
- factual - Practical information 
- metaphorical - Creative analogies
- futuristic - Forward-looking possibilities
"""
            await cl.Message(content=persona_list).send()
            return
            
        elif command == '/team':
            # Show current team
            team_list = ", ".join([p.capitalize() for p in state["selected_personas"]])
            direct_mode = "ON" if cl.user_session.get("direct_mode", False) else "OFF"
            quick_mode = "ON" if cl.user_session.get("quick_mode", False) else "OFF"
            show_perspectives = "ON" if cl.user_session.get("show_perspectives", True) else "OFF"
            show_visualization = "ON" if cl.user_session.get("show_visualization", True) else "OFF"
            visual_only_mode = "ON" if cl.user_session.get("visual_only_mode", False) else "OFF"
            
            status = f"""
**Your current settings:**
- Research team: {team_list}
- Direct mode: {direct_mode}
- Quick mode: {quick_mode}
- Show perspectives: {show_perspectives}
- Show visualizations: {show_visualization}
- Visual-only mode: {visual_only_mode} (Mermaid diagrams & DALL-E images)
"""
            await cl.Message(content=status).send()
            return
            
        elif command == '/add' and len(parts) > 1:
            # Add persona
            persona_id = parts[1].lower()
            persona_factory = cl.user_session.get("persona_factory")
            
            if persona_factory and persona_factory.get_config(persona_id):
                if persona_id not in state["selected_personas"]:
                    state["selected_personas"].append(persona_id)
                    cl.user_session.set("insight_state", state)
                    await cl.Message(content=f"Added {persona_id} to your research team.").send()
                else:
                    await cl.Message(content=f"{persona_id} is already in your research team.").send()
            else:
                await cl.Message(content=f"Unknown persona: {persona_id}. Use /list to see available personas.").send()
            return
            
        elif command == '/remove' and len(parts) > 1:
            # Remove persona
            persona_id = parts[1].lower()
            
            if persona_id in state["selected_personas"]:
                if len(state["selected_personas"]) > 1:  # Don't remove the last persona
                    state["selected_personas"].remove(persona_id)
                    cl.user_session.set("insight_state", state)
                    await cl.Message(content=f"Removed {persona_id} from your research team.").send()
                else:
                    await cl.Message(content="Cannot remove the last persona. You need at least one for analysis.").send()
            else:
                await cl.Message(content=f"{persona_id} is not in your research team.").send()
            return
            
        elif command == '/direct' and len(parts) > 1:
            # Toggle direct mode
            setting = parts[1].lower()
            if setting in ['on', 'true', '1', 'yes']:
                cl.user_session.set("direct_mode", True)
                await cl.Message(content="Direct mode enabled. Bypassing InsightFlow for faster responses.").send()
            elif setting in ['off', 'false', '0', 'no']:
                cl.user_session.set("direct_mode", False)
                await cl.Message(content="Direct mode disabled. Using full InsightFlow system.").send()
            else:
                await cl.Message(content="Invalid option. Use `/direct on` or `/direct off`.").send()
            return
            
        elif command == '/perspectives' and len(parts) > 1:
            # Toggle showing perspectives
            setting = parts[1].lower()
            if setting in ['on', 'true', '1', 'yes']:
                cl.user_session.set("show_perspectives", True)
                await cl.Message(content="Individual perspectives will be shown.").send()
            elif setting in ['off', 'false', '0', 'no']:
                cl.user_session.set("show_perspectives", False)
                await cl.Message(content="Individual perspectives will be hidden for concise output.").send()
            else:
                await cl.Message(content="Invalid option. Use `/perspectives on` or `/perspectives off`.").send()
            return
            
        elif command == '/quick' and len(parts) > 1:
            # Toggle quick mode
            setting = parts[1].lower()
            if setting in ['on', 'true', '1', 'yes']:
                cl.user_session.set("quick_mode", True)
                if len(state["selected_personas"]) > 2:
                    # In quick mode, use max 2 personas
                    state["selected_personas"] = state["selected_personas"][:2]
                    cl.user_session.set("insight_state", state)
                await cl.Message(content="Quick mode enabled. Using fewer personas for faster responses.").send()
            elif setting in ['off', 'false', '0', 'no']:
                cl.user_session.set("quick_mode", False)
                await cl.Message(content="Quick mode disabled. Using your full research team.").send()
            else:
                await cl.Message(content="Invalid option. Use `/quick on` or `/quick off`.").send()
            return
            
        elif command == '/visualization' and len(parts) > 1:
            # Toggle showing Mermaid diagrams
            setting = parts[1].lower()
            if setting in ['on', 'true', '1', 'yes']:
                cl.user_session.set("show_visualization", True)
                await cl.Message(content="Visual diagrams will be shown to represent insights.").send()
            elif setting in ['off', 'false', '0', 'no']:
                cl.user_session.set("show_visualization", False)
                await cl.Message(content="Visual diagrams will be hidden.").send()
            else:
                await cl.Message(content="Invalid option. Use `/visualization on` or `/visualization off`.").send()
            return
            
        elif command == '/visual_only' and len(parts) > 1:
            # Toggle visual-only mode
            setting = parts[1].lower()
            if setting in ['on', 'true', '1', 'yes']:
                # When enabling visual-only mode, turn off other display options
                cl.user_session.set("visual_only_mode", True)
                cl.user_session.set("show_visualization", True)  # Ensure visualization is on
                cl.user_session.set("show_perspectives", False)  # Turn off perspective display
                await cl.Message(content="Visual-only mode enabled. Only visualizations (Mermaid diagrams & DALL-E images) will be shown. Individual perspectives have been disabled.").send()
            elif setting in ['off', 'false', '0', 'no']:
                cl.user_session.set("visual_only_mode", False)
                cl.user_session.set("show_perspectives", True)  # Restore default when turning off
                await cl.Message(content="Visual-only mode disabled. Both text and visualizations will be shown.").send()
            else:
                await cl.Message(content="Invalid option. Use `/visual_only on` or `/visual_only off`.").send()
            return
            
        elif command == '/export_md':
            # Export to markdown
            state = cl.user_session.get("insight_state")
            if not state:
                await cl.Message(content="No analysis data available. Run a query first.").send()
                return
            
            await cl.Message(content="Exporting analysis to markdown...").send()
            filename, error = await export_to_markdown(state)
            
            if error:
                await cl.Message(content=f"Error: {error}").send()
            else:
                await cl.Message(content=f"Analysis exported to: `{filename}`").send()
            return
            
        elif command == '/export_pdf':
            # Export to PDF
            state = cl.user_session.get("insight_state")
            if not state:
                await cl.Message(content="No analysis data available. Run a query first.").send()
                return
            
            await cl.Message(content="Exporting analysis to PDF...").send()
            filename, error = await export_to_pdf(state)
            
            if error:
                await cl.Message(content=f"Error: {error}").send()
            else:
                await cl.Message(content=f"Analysis exported to: `{filename}`").send()
            return
    
    # Process query (either direct or through InsightFlow)
    # Create streaming message for results
    answer_msg = cl.Message(content="")
    await answer_msg.send()
    
    # Create progress message
    progress_msg = cl.Message(content="⏳ Processing your query (0%)...")
    await progress_msg.send()
    
    try:
        # Check if direct mode is enabled
        if cl.user_session.get("direct_mode", False):
            # Direct mode with streaming - bypass InsightFlow
            await update_message(progress_msg, "⏳ Processing in direct mode (20%)...")
            
            # Stream response directly
            full_response = ""
            async for chunk in direct_query(msg_content):
                full_response += chunk
                # Update the message with the new chunk
                await update_message(answer_msg, f"**Direct Answer:**\n\n{full_response}")
                
            # Complete the progress
            await update_message(progress_msg, "✅ Processing complete (100%)")
            return
        
        # Apply quick mode if enabled
        if cl.user_session.get("quick_mode", False) and len(state["selected_personas"]) > 2:
            # Temporarily use just 2 personas for speed
            original_personas = state["selected_personas"].copy()
            state["selected_personas"] = state["selected_personas"][:2]
            await update_message(progress_msg, f"⏳ Using quick mode with personas: {', '.join(state['selected_personas'])} (10%)...")
        
        # Standard InsightFlow processing
        # Set query in state
        state["query"] = msg_content
        
        # Setup for progress tracking
        cl.user_session.set("progress_msg", progress_msg)
        cl.user_session.set("progress_steps", {
            "planner_agent": 10,
            "execute_persona_tasks": 40, 
            "synthesize_responses": 80,
            "generate_visualization": 90,
            "present_results": 95,
            "END": 100
        })
        
        # Hook into state changes for progress
        async def state_monitor():
            """Monitor state changes to update progress"""
            last_step = None
            while True:
                current_step = state.get("current_step_name")
                if current_step != last_step:
                    progress_steps = cl.user_session.get("progress_steps", {})
                    if current_step in progress_steps:
                        progress = progress_steps[current_step]
                        status_messages = {
                            "planner_agent": "Planning research approach",
                            "execute_persona_tasks": "Generating persona perspectives", 
                            "synthesize_responses": "Synthesizing perspectives",
                            "generate_visualization": "Generating visual representation",
                            "present_results": "Finalizing results",
                            "END": "Complete"
                        }
                        status = status_messages.get(current_step, current_step)
                        await update_message(progress_msg, f"⏳ {status} ({progress}%)...")
                    last_step = current_step
                
                # Check if we're done
                if current_step == "END":
                    await update_message(progress_msg, f"✅ Process complete (100%)")
                    break
                    
                # Wait before checking again
                await asyncio.sleep(0.5)
        
        # Start the monitor in the background
        asyncio.create_task(state_monitor())
        
        # Run the graph with timeout protection
        thread_id = cl.user_session.get("id", "default_thread_id")
        config = {"configurable": {"thread_id": thread_id}}
        
        # Set an overall timeout for the entire graph execution
        final_state = await asyncio.wait_for(
            graph.ainvoke(state, config), 
            timeout=150  # 2.5 minute timeout
        )
        cl.user_session.set("insight_state", final_state)
        
        # Update the answer message with the response
        panel_mode = "Research Assistant" if final_state["panel_type"] == "research" else "Multi-Persona Discussion"
        panel_indicator = f"**{panel_mode} Insights:**\n\n"
        await update_message(answer_msg, panel_indicator + final_state.get("synthesized_response", "No response generated."))
        
        # Show individual perspectives if enabled
        if cl.user_session.get("show_perspectives", True):
            for persona_id, response in final_state["persona_responses"].items():
                persona_name = persona_id.capitalize()
                
                # Get proper display name from config if available
                persona_factory = cl.user_session.get("persona_factory")
                if persona_factory:
                    config = persona_factory.get_config(persona_id)
                    if config and "name" in config:
                        persona_name = config["name"]
                
                # Send perspective as a message
                perspective_message = f"**{persona_name}'s Perspective:**\n\n{response}"
                await cl.Message(content=perspective_message).send()
        
        # Restore original personas if in quick mode
        if cl.user_session.get("quick_mode", False) and 'original_personas' in locals():
            state["selected_personas"] = original_personas
            cl.user_session.set("insight_state", state)
        
    except asyncio.TimeoutError:
        print("Overall graph execution timed out")
        await update_message(answer_msg, "The analysis took too long and timed out. Try using `/direct on` or `/quick on` for faster responses.")
        await update_message(progress_msg, "❌ Process timed out")
    except Exception as e:
        print(f"Error in query processing: {e}")
        await update_message(answer_msg, f"I encountered an error: {e}")
        await update_message(progress_msg, f"❌ Error: {str(e)}")

print("InsightFlow AI setup complete. Ready to start.")