Spaces:
Build error
Build error
File size: 11,894 Bytes
a22ab8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
import torch
import fire
import gradio as gr
from PIL import Image
from functools import partial
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
import cv2
import time
import numpy as np
from rembg import remove
from segment_anything import sam_model_registry, SamPredictor
_TITLE = '''Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2310.15110"><img src="https://img.shields.io/badge/2310.15110-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/SUDO-AI-3D/zero123plus'><img src='https://img.shields.io/github/stars/SUDO-AI-3D/zero123plus?style=social' /></a>
</div>
'''
_GPU_ID = 0
if not hasattr(Image, 'Resampling'):
Image.Resampling = Image
def sam_init():
sam_checkpoint = os.path.join(os.path.dirname(__file__), "tmp", "sam_vit_h_4b8939.pth")
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
predictor = SamPredictor(sam)
return predictor
def sam_segment(predictor, input_image, *bbox_coords):
bbox = np.array(bbox_coords)
image = np.asarray(input_image)
start_time = time.time()
predictor.set_image(image)
masks_bbox, scores_bbox, logits_bbox = predictor.predict(
box=bbox,
multimask_output=True
)
print(f"SAM Time: {time.time() - start_time:.3f}s")
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image_bbox = out_image.copy()
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
torch.cuda.empty_cache()
return Image.fromarray(out_image_bbox, mode='RGBA')
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False):
RES = 1024
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
if chk_group is not None:
segment = "Background Removal" in chk_group
rescale = "Rescale" in chk_group
if segment:
image_rem = input_image.convert('RGBA')
image_nobg = remove(image_rem, alpha_matting=True)
arr = np.asarray(image_nobg)[:,:,-1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
# Rescale and recenter
if rescale:
image_arr = np.array(input_image)
in_w, in_h = image_arr.shape[:2]
out_res = min(RES, max(in_w, in_h))
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
ratio = 0.75
side_len = int(max_size / ratio)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len//2
padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w]
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)
rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:])
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
else:
input_image = expand2square(input_image, (127, 127, 127, 0))
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)
def gen_multiview(pipeline, predictor, input_image, scale_slider, steps_slider, seed, output_processing=False):
seed = int(seed)
torch.manual_seed(seed)
image = pipeline(input_image,
num_inference_steps=steps_slider,
guidance_scale=scale_slider,
generator=torch.Generator(pipeline.device).manual_seed(seed)).images[0]
side_len = image.width//2
subimages = [image.crop((x, y, x + side_len, y+side_len)) for y in range(0, image.height, side_len) for x in range(0, image.width, side_len)]
if "Background Removal" in output_processing:
out_images = []
for sub_image in subimages:
sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False)
out_images.append(sub_image)
return out_images
return subimages
def run_demo():
# Load the pipeline
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline",
torch_dtype=torch.float16
)
# Feel free to tune the scheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
pipeline.to(f'cuda:{_GPU_ID}')
predictor = sam_init()
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', tool=None)
example_folder = os.path.join(os.path.dirname(__file__), "./resources/examples")
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
gr.Examples(
examples=example_fns,
inputs=[input_image],
outputs=[input_image],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=10
)
with gr.Accordion('Advanced options', open=False):
with gr.Row():
with gr.Column():
input_processing = gr.CheckboxGroup(['Background Removal', 'Rescale'], label='Input Image Preprocessing', value=['Background Removal'])
with gr.Column():
output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[])
scale_slider = gr.Slider(1, 10, value=4, step=1,
label='Classifier Free Guidance Scale')
steps_slider = gr.Slider(15, 100, value=75, step=1,
label='Number of Diffusion Inference Steps',
info="For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.")
seed = gr.Number(42, label='Seed')
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Column(scale=1):
processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, tool=None, image_mode='RGBA', elem_id="disp_image")
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False, tool=None)
with gr.Row():
view_1 = gr.Image(interactive=False, height=240, show_label=False)
view_2 = gr.Image(interactive=False, height=240, show_label=False)
view_3 = gr.Image(interactive=False, height=240, show_label=False)
with gr.Row():
view_4 = gr.Image(interactive=False, height=240, show_label=False)
view_5 = gr.Image(interactive=False, height=240, show_label=False)
view_6 = gr.Image(interactive=False, height=240, show_label=False)
run_btn.click(fn=partial(preprocess, predictor),
inputs=[input_image, input_processing],
outputs=[processed_image_highres, processed_image], queue=True
).success(fn=partial(gen_multiview, pipeline, predictor),
inputs=[processed_image_highres, scale_slider, steps_slider, seed, output_processing],
outputs=[view_1, view_2, view_3, view_4, view_5, view_6])
demo.queue().launch(share=True, max_threads=80)
if __name__ == '__main__':
fire.Fire(run_demo)
|