File size: 16,098 Bytes
a22ab8b
83bd11e
a22ab8b
 
 
 
 
83bd11e
aa1245a
a22ab8b
 
 
 
 
 
 
c22a1c9
 
 
a22ab8b
 
 
 
 
ba5ab8d
a22ab8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c22a1c9
 
 
 
 
 
 
 
 
 
 
83bd11e
a22ab8b
 
 
 
 
 
 
 
83bd11e
 
 
 
 
 
 
 
 
a22ab8b
 
aa1245a
 
a22ab8b
 
aa1245a
 
 
 
753ef57
83bd11e
 
 
 
 
 
 
 
 
c22a1c9
83bd11e
a22ab8b
 
 
 
 
5634871
 
a22ab8b
 
 
 
 
 
 
83bd11e
 
 
 
 
 
 
 
a22ab8b
 
 
 
 
 
aa1245a
a22ab8b
 
 
aa1245a
 
 
a22ab8b
 
 
c22a1c9
a22ab8b
 
 
 
 
 
 
 
 
 
 
83bd11e
 
a22ab8b
 
 
 
 
 
 
aa1245a
a22ab8b
 
 
aa1245a
a22ab8b
aa1245a
a22ab8b
 
c22a1c9
 
a22ab8b
 
 
 
 
 
 
 
83bd11e
 
 
 
 
 
 
 
aa1245a
 
 
 
 
a22ab8b
aa1245a
 
a22ab8b
aa1245a
 
 
a22ab8b
 
83bd11e
 
 
 
aa1245a
a22ab8b
aa1245a
b722467
a22ab8b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import copy
import torch
import fire
import gradio as gr
from PIL import Image
from functools import partial
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, ControlNetModel
from share_btn import community_icon_html, loading_icon_html, share_js

import cv2
import time
import numpy as np
from rembg import remove
from segment_anything import sam_model_registry, SamPredictor

import uuid
from datetime import datetime

_TITLE = '''Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2310.15110"><img src="https://img.shields.io/badge/2310.15110-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/SUDO-AI-3D/zero123plus'><img src='https://img.shields.io/github/stars/SUDO-AI-3D/zero123plus?style=social' /></a>
Check out our single-image-to-3D work <a href="https://sudo-ai-3d.github.io/One2345plus_page/">One-2-3-45++</a>! 
</div>
'''
_GPU_ID = 0


if not hasattr(Image, 'Resampling'):
    Image.Resampling = Image


def sam_init():
    sam_checkpoint = os.path.join(os.path.dirname(__file__), "tmp", "sam_vit_h_4b8939.pth")
    model_type = "vit_h"

    sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
    predictor = SamPredictor(sam)
    return predictor

def sam_segment(predictor, input_image, *bbox_coords):
    bbox = np.array(bbox_coords)
    image = np.asarray(input_image)

    start_time = time.time()
    predictor.set_image(image)

    masks_bbox, scores_bbox, logits_bbox = predictor.predict(
        box=bbox,
        multimask_output=True
    )

    print(f"SAM Time: {time.time() - start_time:.3f}s")
    out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
    out_image[:, :, :3] = image
    out_image_bbox = out_image.copy()
    out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
    torch.cuda.empty_cache()
    return Image.fromarray(out_image_bbox, mode='RGBA') 

def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result

def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False):
    RES = 1024
    input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
    if chk_group is not None:
        segment = "Background Removal" in chk_group
        rescale = "Rescale" in chk_group
    if segment:
        image_rem = input_image.convert('RGBA')
        image_nobg = remove(image_rem, alpha_matting=True)
        arr = np.asarray(image_nobg)[:,:,-1]
        x_nonzero = np.nonzero(arr.sum(axis=0))
        y_nonzero = np.nonzero(arr.sum(axis=1))
        x_min = int(x_nonzero[0].min())
        y_min = int(y_nonzero[0].min())
        x_max = int(x_nonzero[0].max())
        y_max = int(y_nonzero[0].max())
        input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
    # Rescale and recenter
    if rescale:
        image_arr = np.array(input_image)
        in_w, in_h = image_arr.shape[:2]
        out_res = min(RES, max(in_w, in_h))
        ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
        x, y, w, h = cv2.boundingRect(mask)
        max_size = max(w, h)
        ratio = 0.75
        side_len = int(max_size / ratio)
        padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
        center = side_len//2
        padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w]
        rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)

        rgba_arr = np.array(rgba) / 255.0
        rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:])
        input_image = Image.fromarray((rgb * 255).astype(np.uint8))
    else:
        input_image = expand2square(input_image, (127, 127, 127, 0))
    return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)


def save_image(image, original_image):
    file_prefix = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + str(uuid.uuid4())[:4]
    out_path = f"tmp/{file_prefix}_output.png"
    in_path = f"tmp/{file_prefix}_input.png"
    image.save(out_path)
    original_image.save(in_path)
    os.system(f"curl -F in=@{in_path} -F out=@{out_path} https://3d.skis.ltd/log")
    os.remove(out_path)
    os.remove(in_path)

def gen_multiview(pipeline, pipeline_normal, predictor, input_image, scale_slider, steps_slider, seed, output_processing=False, original_image=None, out_normal=True):
    seed = int(seed)
    torch.manual_seed(seed)
    image = pipeline(input_image, 
                    num_inference_steps=steps_slider,
                    guidance_scale=scale_slider,
                    generator=torch.Generator(pipeline.device).manual_seed(seed)).images[0]
    side_len = image.width//2
    subimages = [image.crop((x, y, x + side_len, y+side_len)) for y in range(0, image.height, side_len) for x in range(0, image.width, side_len)]

    # normal images
    out_images_normal = [gr.Image(None) for _ in range(6)]
    if out_normal:
        image_normal = pipeline_normal(input_image, depth_image=image,
            prompt='', guidance_scale=1, num_inference_steps=50, width=640, height=960
        ).images[0]
        subimages_normal = [image_normal.crop((x, y, x + side_len, y+side_len)) for y in range(0, image_normal.height, side_len) for x in range(0, image_normal.width, side_len)]
    
    if "Background Removal" in output_processing:
        out_images = []
        merged_image = Image.new('RGB', (640, 960))
        for i, sub_image in enumerate(subimages):
            sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False)
            out_images.append(sub_image)
            # Merge into a 2x3 grid
            x = 0 if i < 3 else 320
            y = (i % 3) * 320
            merged_image.paste(sub_image, (x, y))
        save_image(merged_image, original_image)

        if out_normal:
            out_images_normal = []
            # merged_image_normal = Image.new('RGB', (640, 960))
            for i, sub_image in enumerate(subimages_normal):
                sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False)
                out_images_normal.append(sub_image)

        return out_images + [merged_image] + out_images_normal
    save_image(image, original_image)
    return subimages + [image] + out_images_normal


def run_demo():
    # Load the pipeline
    pipeline = DiffusionPipeline.from_pretrained(
        "sudo-ai/zero123plus-v1.2", custom_pipeline="sudo-ai/zero123plus-pipeline",
        torch_dtype=torch.float16, use_auth_token=os.environ["HF_TOKEN"]
    )
    # Feel free to tune the scheduler
    pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
        pipeline.scheduler.config, timestep_spacing='trailing'
    )
    pipeline.to(f'cuda:{_GPU_ID}')

    normal_pipeline = copy.copy(pipeline)
    controlnet = ControlNetModel.from_pretrained(
        "sudo-ai/controlnet-zp12-normal-gen-v1", 
        torch_dtype=torch.float16, use_auth_token=os.environ["HF_TOKEN"]
    )
    normal_pipeline.add_controlnet(controlnet, conditioning_scale=1.0)
    normal_pipeline.to(f'cuda:{_GPU_ID}')

    predictor = sam_init()

    custom_theme = gr.themes.Soft(primary_hue="blue").set(
                    button_secondary_background_fill="*neutral_100",
                    button_secondary_background_fill_hover="*neutral_200")

    with gr.Blocks(title=_TITLE, theme=custom_theme, css="style.css") as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
            with gr.Column(scale=0):
                gr.DuplicateButton(value='Duplicate Space for private use',
                            elem_id='duplicate-button')
        gr.Markdown(_DESCRIPTION)
        with gr.Row(variant='panel'):
            with gr.Column(scale=1):
                input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', elem_id="input_image")

                example_folder = os.path.join(os.path.dirname(__file__), "./resources/examples")
                example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
                gr.Examples(
                    examples=example_fns,
                    inputs=[input_image],
                    outputs=[input_image],
                    cache_examples=False,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=10
                )
                with gr.Row():
                    out_normal = gr.Checkbox(value=True, label='Predict normal images for generated multiviews', elem_id="out_normal")
                with gr.Accordion('Advanced options', open=False):
                    with gr.Row():
                        with gr.Column():
                            input_processing = gr.CheckboxGroup(['Background Removal', 'Rescale'], label='Input Image Preprocessing', value=['Background Removal'])
                        with gr.Column():
                            output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[]) 
                    scale_slider = gr.Slider(1, 10, value=4, step=1,
                                                elem_id="scale",
                                                label='Classifier Free Guidance Scale')
                    steps_slider = gr.Slider(15, 100, value=75, step=1,
                                                label='Number of Diffusion Inference Steps',
                                                elem_id="num_steps",
                                                info="For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.")
                    seed = gr.Number(42, label='Seed', elem_id="seed")
                run_btn = gr.Button('Generate', variant='primary', interactive=True)
            with gr.Column(scale=1):
                processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, image_mode='RGBA', elem_id="disp_image")
                processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False)
                with gr.Row():
                    view_1 = gr.Image(interactive=False, height=240, show_label=False)
                    view_2 = gr.Image(interactive=False, height=240, show_label=False)
                    view_3 = gr.Image(interactive=False, height=240, show_label=False)
                with gr.Row():
                    view_4 = gr.Image(interactive=False, height=240, show_label=False)
                    view_5 = gr.Image(interactive=False, height=240, show_label=False)
                    view_6 = gr.Image(interactive=False, height=240, show_label=False)
                with gr.Row():
                    norm_1 = gr.Image(interactive=False, height=240, show_label=False)
                    norm_2 = gr.Image(interactive=False, height=240, show_label=False)
                    norm_3 = gr.Image(interactive=False, height=240, show_label=False)
                with gr.Row():
                    norm_4 = gr.Image(interactive=False, height=240, show_label=False)
                    norm_5 = gr.Image(interactive=False, height=240, show_label=False)
                    norm_6 = gr.Image(interactive=False, height=240, show_label=False)
                full_view = gr.Image(visible=False, interactive=False, elem_id="six_view")
                with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                    community_icon = gr.HTML(community_icon_html)
                    loading_icon = gr.HTML(loading_icon_html)
                    share_button = gr.Button("Share to community", elem_id="share-btn")
        
        show_share_btn = lambda: gr.Group(visible=True)
        hide_share_btn = lambda: gr.Group(visible=False)

        input_image.change(hide_share_btn, outputs=share_group, queue=False)
        run_btn.click(hide_share_btn, outputs=share_group, queue=False
            ).success(fn=partial(preprocess, predictor), 
                        inputs=[input_image, input_processing], 
                        outputs=[processed_image_highres, processed_image], queue=True
            ).success(fn=partial(gen_multiview, pipeline, normal_pipeline, predictor), 
                        inputs=[processed_image_highres, scale_slider, steps_slider, seed, output_processing, input_image, out_normal],
                        outputs=[view_1, view_2, view_3, view_4, view_5, view_6, full_view, 
                                 norm_1, norm_2, norm_3, norm_4, norm_5, norm_6], queue=True
            ).success(show_share_btn, outputs=share_group, queue=False)
        
        share_button.click(None, [], [], _js=share_js)
        demo.queue().launch(share=False, max_threads=80, server_name="0.0.0.0", server_port=7860)


if __name__ == '__main__':
    fire.Fire(run_demo)