Spaces:
Running
Running
File size: 52,975 Bytes
c489cf0 247920d c489cf0 247920d 5dbc569 c3ff739 c489cf0 247920d c3ff739 247920d 5dbc569 247920d 58f0de3 247920d c3ff739 247920d c3ff739 247920d 5dbc569 247920d c3ff739 247920d c3ff739 247920d c3ff739 247920d c3ff739 247920d c489cf0 247920d c489cf0 c3ff739 347dbd1 c3ff739 347dbd1 5dbc569 347dbd1 247920d 5dbc569 247920d 5dbc569 247920d 5dbc569 09225f8 5dbc569 bcc14d5 5dbc569 5d2f302 5dbc569 247920d 5d2f302 247920d 5dbc569 247920d 5dbc569 247920d 5d2f302 5dbc569 5d2f302 5dbc569 5d2f302 5dbc569 247920d 5d2f302 5dbc569 247920d 5dbc569 5d2f302 5dbc569 247920d 5dbc569 bcc14d5 5dbc569 bcc14d5 5dbc569 5d2f302 5dbc569 5d2f302 5dbc569 5d2f302 5dbc569 bcc14d5 5dbc569 bcc14d5 247920d 5dbc569 247920d 5dbc569 247920d c3ff739 5dbc569 247920d 84496b7 247920d 8072b11 247920d 8072b11 247920d 8072b11 247920d 5dbc569 c3ff739 5dbc569 c3ff739 5dbc569 c3ff739 5dbc569 c489cf0 5dbc569 c3ff739 5dbc569 247920d c489cf0 247920d c489cf0 247920d 347dbd1 247920d 347dbd1 09225f8 347dbd1 09225f8 247920d c3ff739 86e4192 c3ff739 86e4192 247920d 347dbd1 c3ff739 247920d 5dbc569 247920d bcc14d5 c3ff739 247920d c489cf0 c3ff739 247920d c3ff739 247920d 86e4192 247920d 5dbc569 86e4192 5dbc569 86e4192 5dbc569 247920d 5dbc569 247920d 86e4192 247920d 86e4192 247920d bcc14d5 86e4192 247920d bcc14d5 48e7774 247920d bcc14d5 247920d 86e4192 247920d 86e4192 247920d c3ff739 247920d c3ff739 247920d 86e4192 bcc14d5 c3ff739 247920d bcc14d5 247920d bcc14d5 247920d bcc14d5 247920d bcc14d5 247920d 86e4192 247920d 86e4192 bcc14d5 247920d c3ff739 247920d c3ff739 247920d bcc14d5 c3ff739 bcc14d5 247920d 3de5d6b 247920d 5dbc569 c489cf0 5dbc569 247920d 5dbc569 09225f8 5dbc569 bcc14d5 5dbc569 247920d 5dbc569 247920d 5dbc569 c489cf0 5dbc569 247920d 5dbc569 247920d 5dbc569 247920d 5dbc569 247920d 5dbc569 c489cf0 5dbc569 247920d 5dbc569 247920d 5dbc569 247920d 5dbc569 247920d 5dbc569 247920d 5dbc569 c489cf0 5dbc569 247920d 5dbc569 09225f8 5dbc569 247920d 5dbc569 c489cf0 5dbc569 bcc14d5 5dbc569 247920d 5dbc569 247920d 5dbc569 247920d 5dbc569 247920d c489cf0 247920d 347dbd1 5dbc569 bcc14d5 347dbd1 247920d bcc14d5 247920d c3ff739 c489cf0 c3ff739 c489cf0 247920d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 |
from fastapi import FastAPI, HTTPException, Request, UploadFile, File, Depends, status
from fastapi.responses import StreamingResponse
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any, AsyncGenerator
import asyncio
import json
import uuid
from datetime import datetime
import os
from contextlib import asynccontextmanager
import tempfile
import shutil
import random
import hashlib
import secrets
from functools import wraps
# Third-party imports
from openai import OpenAI, AsyncOpenAI
from qdrant_client import AsyncQdrantClient
from qdrant_client.models import Distance, VectorParams, PointStruct, Filter, FieldCondition, MatchValue
from sentence_transformers import SentenceTransformer
import torch
import asyncio
from concurrent.futures import ThreadPoolExecutor
import PyPDF2
# Models
OPENROUTER_MODELS = ["deepseek/deepseek-chat-v3-0324:free", "deepseek/deepseek-r1-0528:free", "qwen/qwen3-235b-a22b:free", "google/gemini-2.0-flash-exp:free"]
GROQ_MODELS = ["llama-3.3-70b-versatile", "openai/gpt-oss-120b"]
# Models for OpenAI-compatible API
class Message(BaseModel):
role: str = Field(..., description="The role of the message author")
content: str = Field(..., description="The content of the message")
class ChatCompletionRequest(BaseModel):
model: str = Field(default="auto", description="Model to use (auto for dynamic selection)")
messages: List[Message] = Field(..., description="List of messages")
max_tokens: Optional[int] = Field(default=1024, description="Maximum tokens to generate")
temperature: Optional[float] = Field(default=0.7, description="Temperature for sampling")
stream: Optional[bool] = Field(default=False, description="Whether to stream responses")
top_p: Optional[float] = Field(default=1.0, description="Top-p sampling parameter")
provider: Optional[str] = Field(default="random", description="Provider to use (random, openrouter, groq)")
class ChatCompletionResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[Dict[str, Any]]
usage: Optional[Dict[str, int]] = None
class ChatCompletionChunk(BaseModel):
id: str
object: str = "chat.completion.chunk"
created: int
model: str
choices: List[Dict[str, Any]]
class DocumentUploadRequest(BaseModel):
metadata: Optional[Dict[str, Any]] = None
class DocumentSearchRequest(BaseModel):
query: str = Field(..., description="Search query")
limit: int = Field(default=5, description="Maximum number of results")
min_score: float = Field(default=0.1, description="Minimum similarity score")
# Configuration
class Config:
# Provider API Keys
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Vector DB Configuration
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
COLLECTION_NAME = os.getenv("COLLECTION_NAME", "documents")
# Embedding Configuration
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
TOP_K = int(os.getenv("TOP_K", "10"))
SIMILARITY_THRESHOLD = float(os.getenv("SIMILARITY_THRESHOLD", "0.1"))
DEVICE = os.getenv("DEVICE", "cuda" if torch.cuda.is_available() else "cpu")
# Security Configuration
API_KEYS = os.getenv("API_KEYS", "").split(",") if os.getenv("API_KEYS") else []
MASTER_KEY = os.getenv("MASTER_KEY", "")
ENABLE_SECURITY = os.getenv("ENABLE_SECURITY", "true").lower() == "true"
RATE_LIMIT_PER_MINUTE = int(os.getenv("RATE_LIMIT_PER_MINUTE", "60"))
@classmethod
def generate_api_key(cls) -> str:
"""Generate a new API key"""
return f"sk-{secrets.token_urlsafe(32)}"
@classmethod
def validate_api_key(cls, api_key: str) -> bool:
"""Validate API key"""
if not cls.ENABLE_SECURITY:
return True
if not api_key:
return False
# Check master key
if cls.MASTER_KEY and api_key == cls.MASTER_KEY:
return True
# Check configured API keys
if cls.API_KEYS and api_key in cls.API_KEYS:
return True
return False
# Security Models
class APIKeyRequest(BaseModel):
description: Optional[str] = Field(None, description="Description for the API key")
class APIKeyResponse(BaseModel):
api_key: str
description: Optional[str] = None
created_at: str
status: str = "active"
class SecurityInfo(BaseModel):
security_enabled: bool
rate_limit_per_minute: int
has_master_key: bool
configured_keys_count: int
# Rate Limiting
class RateLimiter:
def __init__(self):
self.requests = {}
self.blocked_ips = set()
def is_allowed(self, identifier: str, limit_per_minute: int = Config.RATE_LIMIT_PER_MINUTE) -> bool:
"""Check if request is allowed based on rate limit"""
if not Config.ENABLE_SECURITY:
return True
if identifier in self.blocked_ips:
return False
now = datetime.now()
minute_key = now.strftime("%Y-%m-%d %H:%M")
if identifier not in self.requests:
self.requests[identifier] = {}
if minute_key not in self.requests[identifier]:
self.requests[identifier][minute_key] = 0
# Clean old entries (keep only last 2 minutes)
keys_to_remove = []
for key in self.requests[identifier]:
try:
key_time = datetime.strptime(key, "%Y-%m-%d %H:%M")
if (now - key_time).total_seconds() > 120: # 2 minutes
keys_to_remove.append(key)
except ValueError:
keys_to_remove.append(key)
for key in keys_to_remove:
del self.requests[identifier][key]
# Check current minute limit
current_requests = self.requests[identifier].get(minute_key, 0)
if current_requests >= limit_per_minute:
return False
self.requests[identifier][minute_key] = current_requests + 1
return True
def block_ip(self, ip: str):
"""Block an IP address"""
self.blocked_ips.add(ip)
def unblock_ip(self, ip: str):
"""Unblock an IP address"""
self.blocked_ips.discard(ip)
# Security Dependencies
security = HTTPBearer(auto_error=False)
rate_limiter = RateLimiter()
async def verify_api_key(
request: Request,
credentials: Optional[HTTPAuthorizationCredentials] = Depends(security)
) -> str:
"""Verify API key from Authorization header"""
if not Config.ENABLE_SECURITY:
return "security_disabled"
# Get client IP
client_ip = request.client.host
# Check rate limit
if not rate_limiter.is_allowed(client_ip):
raise HTTPException(
status_code=status.HTTP_429_TOO_MANY_REQUESTS,
detail="Rate limit exceeded"
)
# Check API key
if not credentials:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="API key required. Please provide a valid API key in the Authorization header as 'Bearer <your-api-key>'"
)
api_key = credentials.credentials
if not Config.validate_api_key(api_key):
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key"
)
return api_key
async def verify_master_key(
request: Request,
credentials: Optional[HTTPAuthorizationCredentials] = Depends(security)
) -> str:
"""Verify master key for admin operations"""
if not Config.ENABLE_SECURITY:
return "security_disabled"
if not credentials:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Master key required for admin operations"
)
api_key = credentials.credentials
if not Config.MASTER_KEY or api_key != Config.MASTER_KEY:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="Invalid master key"
)
return api_key
class DynamicOpenAIService:
"""Service for dynamic OpenAI provider selection"""
def __init__(self):
self.validate_api_keys()
def validate_api_keys(self):
"""Validate that at least one API key is available"""
if not Config.OPENROUTER_API_KEY and not Config.GROQ_API_KEY:
raise ValueError("At least one API key (OPENROUTER_API_KEY or GROQ_API_KEY) must be provided")
if not Config.OPENROUTER_API_KEY:
print("Warning: OPENROUTER_API_KEY not found, will only use Groq")
if not Config.GROQ_API_KEY:
print("Warning: GROQ_API_KEY not found, will only use OpenRouter")
def get_client(self, provider="random"):
"""Get OpenAI client for specified provider"""
available_providers = []
if Config.OPENROUTER_API_KEY:
available_providers.append("openrouter")
if Config.GROQ_API_KEY:
available_providers.append("groq")
if not available_providers:
raise ValueError("No API keys available for any provider")
if provider == "random":
provider = random.choice(available_providers)
elif provider not in available_providers:
# Fallback to available provider
provider = available_providers[0]
print(f"Requested provider not available, using {provider}")
print(f"Selected provider: {provider}")
if provider == "openrouter":
return (
OpenAI(api_key=Config.OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1"),
OPENROUTER_MODELS,
provider
)
else: # groq
return (
OpenAI(api_key=Config.GROQ_API_KEY, base_url="https://api.groq.com/openai/v1"),
GROQ_MODELS,
provider
)
async def get_async_client(self, provider="random"):
"""Get AsyncOpenAI client for specified provider"""
available_providers = []
if Config.OPENROUTER_API_KEY:
available_providers.append("openrouter")
if Config.GROQ_API_KEY:
available_providers.append("groq")
if not available_providers:
raise ValueError("No API keys available for any provider")
if provider == "random":
provider = random.choice(available_providers)
elif provider not in available_providers:
# Fallback to available provider
provider = available_providers[0]
print(f"Requested provider not available, using {provider}")
print(f"Selected provider: {provider}")
if provider == "openrouter":
return (
AsyncOpenAI(api_key=Config.OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1"),
OPENROUTER_MODELS,
provider
)
else: # groq
return (
AsyncOpenAI(api_key=Config.GROQ_API_KEY, base_url="https://api.groq.com/openai/v1"),
GROQ_MODELS,
provider
)
def get_text_response(self, prompt, provider="random", model=None):
"""Get text response from AI"""
client, models, selected_provider = self.get_client(provider)
if not model or model == "auto":
model = random.choice(models)
print(f"Using model: {model}")
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=1024,
temperature=0.7
)
return response.choices[0].message.content
def get_text_response_streaming(self, prompt, provider="random", model=None):
"""Get streaming text response from AI"""
client, models, selected_provider = self.get_client(provider)
if not model or model == "auto":
model = random.choice(models)
print(f"Using model: {model}")
stream = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=1024,
temperature=0.7,
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
yield chunk.choices[0].delta.content
class ApplicationState:
"""Application state container"""
def __init__(self):
self.openai_service = None
self.qdrant_client = None
self.embedding_service = None
self.document_manager = None
# Global state instance
app_state = ApplicationState()
class EmbeddingService:
"""Service for generating embeddings using sentence-transformers"""
def __init__(self):
self.model_name = Config.EMBEDDING_MODEL
self.device = Config.DEVICE
self.dimension = 384 # all-MiniLM-L6-v2 dimension
self.executor = ThreadPoolExecutor(max_workers=4)
# Load the model
print(f"Loading embedding model: {self.model_name}")
self.model = SentenceTransformer(self.model_name, device=self.device)
print(f"Model loaded successfully on device: {self.device}")
async def get_embedding(self, text: str) -> List[float]:
"""Generate embedding for given text"""
try:
loop = asyncio.get_event_loop()
embedding = await loop.run_in_executor(
self.executor,
self._encode_text,
text
)
return embedding.tolist()
except Exception as e:
print(f"Error generating embedding: {e}")
return [0.1] * self.dimension
def _encode_text(self, text: str):
"""Synchronous text encoding - runs in thread pool"""
return self.model.encode([text])[0]
async def get_document_embedding(self, text: str) -> List[float]:
"""Generate embedding for document text"""
return await self.get_embedding(text)
async def get_query_embedding(self, text: str) -> List[float]:
"""Generate embedding for query text"""
return await self.get_embedding(text)
async def batch_embed(self, texts: List[str]) -> List[List[float]]:
"""Generate embeddings for multiple texts efficiently"""
try:
loop = asyncio.get_event_loop()
embeddings = await loop.run_in_executor(
self.executor,
self._batch_encode_texts,
texts
)
return embeddings.tolist()
except Exception as e:
print(f"Error in batch embedding: {e}")
return [[0.1] * self.dimension for _ in texts]
def _batch_encode_texts(self, texts: List[str]):
"""Synchronous batch encoding - runs in thread pool"""
return self.model.encode(texts)
def health_check(self) -> dict:
"""Check embedding service health"""
try:
test_embedding = self.model.encode(["test"])
return {
"status": "healthy",
"model": self.model_name,
"device": self.device,
"dimension": self.dimension,
"test_embedding_shape": test_embedding.shape
}
except Exception as e:
return {
"status": "unhealthy",
"model": self.model_name,
"error": str(e)
}
class DocumentManager:
"""Enhanced document management with async support"""
def __init__(self, qdrant_client: AsyncQdrantClient, embedding_service: EmbeddingService):
self.qdrant_client = qdrant_client
self.embedding_service = embedding_service
self.collection_name = Config.COLLECTION_NAME
self.vector_size = 384
self.executor = ThreadPoolExecutor(max_workers=2)
async def _read_pdf(self, file_path: str) -> str:
"""Read text from PDF file asynchronously"""
try:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(self.executor, self._sync_read_pdf, file_path)
except Exception as e:
print(f"Error reading PDF {file_path}: {e}")
return ""
def _sync_read_pdf(self, file_path: str) -> str:
"""Synchronous PDF reading"""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
except Exception as e:
print(f"Error reading PDF {file_path}: {e}")
return ""
def _chunk_text(self, text: str, chunk_size: int = 500, overlap: int = 50) -> List[str]:
"""Split text into chunks"""
if len(text) <= chunk_size:
return [text]
chunks = []
start = 0
while start < len(text):
end = start + chunk_size
if end < len(text):
sentence_end = text.rfind('.', start, end)
if sentence_end > start:
end = sentence_end + 1
else:
word_end = text.rfind(' ', start, end)
if word_end > start:
end = word_end
chunk = text[start:end].strip()
if chunk:
chunks.append(chunk)
start = end - overlap
return chunks
async def _ensure_collection_exists(self):
"""Ensure the collection exists, create if it doesn't"""
try:
collections = await self.qdrant_client.get_collections()
collection_names = [c.name for c in collections.collections]
if self.collection_name not in collection_names:
print(f"Creating collection '{self.collection_name}' on-demand...")
await self.qdrant_client.create_collection(
collection_name=self.collection_name,
vectors_config=VectorParams(
size=self.vector_size,
distance=Distance.COSINE
)
)
print(f"β Collection '{self.collection_name}' created successfully!")
except Exception as e:
print(f"Warning: Could not ensure collection exists: {e}")
async def add_document(self, file_path: str, metadata: Dict[str, Any] = None) -> str:
"""Add a PDF document to the collection"""
try:
await self._ensure_collection_exists()
# Read PDF
text = await self._read_pdf(file_path)
if not text:
print(f"Could not extract text from {file_path}")
return ""
# Create chunks
chunks = self._chunk_text(text)
if not chunks:
print(f"No chunks created from {file_path}")
return ""
# Generate document ID
document_id = str(uuid.uuid4())
# Create embeddings for all chunks
embeddings = await self.embedding_service.batch_embed(chunks)
# Create points for each chunk
points = []
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)):
payload = {
"document_id": document_id,
"file_path": file_path,
"chunk_index": i,
"content": chunk, # Use 'content' as the main field
"chunk_text": chunk, # Keep for compatibility
"total_chunks": len(chunks),
"timestamp": datetime.now().isoformat()
}
if metadata:
payload["metadata"] = metadata
point = PointStruct(
id=str(uuid.uuid4()),
vector=embedding,
payload=payload
)
points.append(point)
# Insert into Qdrant
await self.qdrant_client.upsert(collection_name=self.collection_name, points=points)
print(f"β Added document: {file_path}")
print(f" Document ID: {document_id}")
print(f" Chunks: {len(chunks)}")
return document_id
except Exception as e:
print(f"Error adding document {file_path}: {e}")
return ""
async def search_documents(self, query: str, limit: int = 5, min_score: float = 0.1) -> List[Dict[str, Any]]:
"""Search for relevant document chunks"""
try:
await self._ensure_collection_exists()
print(f"Document Search - Query: '{query}', Limit: {limit}, Min Score: {min_score}")
# Generate query embedding
query_embedding = await self.embedding_service.get_query_embedding(query)
print(f"Document Search - Generated embedding vector of size: {len(query_embedding)}")
# Search in Qdrant
search_results = await self.qdrant_client.search(
collection_name=self.collection_name,
query_vector=query_embedding,
limit=limit,
score_threshold=min_score
)
print(f"Document Search - Qdrant returned {len(search_results)} results")
# Format results
results = []
for i, result in enumerate(search_results):
content = result.payload.get("content", result.payload.get("chunk_text", ""))
print(f"Document Search - Result {i+1}: Score={result.score:.4f}, Content preview: {content[:100]}...")
results.append({
"score": result.score,
"text": content,
"file_path": result.payload.get("file_path", ""),
"document_id": result.payload.get("document_id", ""),
"chunk_index": result.payload.get("chunk_index", 0)
})
print(f"β Document Search - Found {len(results)} results for query: '{query}'")
return results
except Exception as e:
print(f"Error searching: {e}")
import traceback
traceback.print_exc()
return []
async def list_documents(self) -> List[Dict[str, Any]]:
"""List all documents in the collection"""
try:
await self._ensure_collection_exists()
# Get all points
points, _ = await self.qdrant_client.scroll(
collection_name=self.collection_name,
limit=10000,
with_payload=True,
with_vectors=False
)
# Group by document_id
documents = {}
for point in points:
doc_id = point.payload.get("document_id")
if doc_id and doc_id not in documents:
documents[doc_id] = {
"document_id": doc_id,
"file_path": point.payload.get("file_path", ""),
"total_chunks": point.payload.get("total_chunks", 0),
"timestamp": point.payload.get("timestamp", ""),
"metadata": point.payload.get("metadata", {})
}
doc_list = list(documents.values())
print(f"β Found {len(doc_list)} documents")
return doc_list
except Exception as e:
print(f"Error listing documents: {e}")
return []
async def delete_document(self, document_id: str) -> bool:
"""Delete a document and all its chunks"""
try:
await self._ensure_collection_exists()
# Find all points for this document
points, _ = await self.qdrant_client.scroll(
collection_name=self.collection_name,
limit=10000,
with_payload=True,
with_vectors=False
)
# Collect point IDs to delete
points_to_delete = []
for point in points:
if point.payload.get("document_id") == document_id:
points_to_delete.append(point.id)
if not points_to_delete:
print(f"No document found with ID: {document_id}")
return False
# Delete points
await self.qdrant_client.delete(
collection_name=self.collection_name,
points_selector=points_to_delete
)
print(f"β Deleted document: {document_id} ({len(points_to_delete)} chunks)")
return True
except Exception as e:
print(f"Error deleting document: {e}")
return False
class RAGService:
"""Service for retrieval-augmented generation"""
@staticmethod
async def retrieve_relevant_chunks(query: str, top_k: int = Config.TOP_K) -> List[Dict[str, Any]]:
"""Retrieve relevant document chunks using the document manager"""
try:
if app_state.document_manager is None:
print("Error: Document manager is not initialized")
return []
# Use a lower similarity threshold for RAG to get more results
min_score = 0.1 # Lower threshold for RAG
print(f"RAG Search - Query: '{query}', Limit: {top_k}, Min Score: {min_score}")
# Use the document manager's search functionality
results = await app_state.document_manager.search_documents(
query=query,
limit=top_k,
min_score=min_score
)
print(f"RAG Search - Found {len(results)} results")
# If no results with low threshold, try even lower
if not results:
print("No results with min_score=0.1, trying with min_score=0.0")
results = await app_state.document_manager.search_documents(
query=query,
limit=top_k,
min_score=0.0
)
print(f"RAG Search - Found {len(results)} results with min_score=0.0")
return results
except Exception as e:
print(f"Error retrieving chunks: {e}")
return []
@staticmethod
def build_context_prompt(query: str, results: List[Dict[str, Any]]) -> str:
"""Build a context-aware prompt with retrieved chunks"""
if not results:
return query
# Build context parts
context_parts = []
for result in results:
context_parts.append(f"Source: {result['file_path']}\n{result['text']}")
combined_context = "\n\n---\n\n".join(context_parts)
prompt = f"""Use the following context to answer the user's question naturally and directly. Don't mention that you're using context or say "based on the context" - just provide the answer as if you know it.
Context:
{combined_context}
Question: {query}
Important: When responding to questions that use pronouns like "he," "him," "his," or any similar references, always refer to Subhrajit specifically. Any personal pronouns in questions should be understood as referring to Subhrajit.
Please ensure your answer is complete and not cut off, adjusting its length as necessary to fit within the desired context length. Always Respond it in Markdown Format."""
return prompt
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup
print("Initializing services...")
# Initialize dynamic OpenAI service
try:
app_state.openai_service = DynamicOpenAIService()
print("β Dynamic OpenAI service initialized")
except Exception as e:
print(f"β Error initializing OpenAI service: {e}")
raise e
# Initialize Qdrant client
try:
app_state.qdrant_client = AsyncQdrantClient(
url=Config.QDRANT_URL,
api_key=Config.QDRANT_API_KEY
)
print("β Qdrant client initialized")
except Exception as e:
print(f"β Error initializing Qdrant client: {e}")
raise e
# Initialize embedding service
try:
print("Loading embedding model...")
app_state.embedding_service = EmbeddingService()
print(f"β Embedding model loaded: {Config.EMBEDDING_MODEL}")
print(f"β Model device: {Config.DEVICE}")
print(f"β Vector dimension: {app_state.embedding_service.dimension}")
except Exception as e:
print(f"β Error initializing embedding service: {e}")
raise e
# Initialize document manager
try:
app_state.document_manager = DocumentManager(
qdrant_client=app_state.qdrant_client,
embedding_service=app_state.embedding_service
)
print("β Document manager initialized")
except Exception as e:
print(f"β Error initializing document manager: {e}")
raise e
print("π All services initialized successfully!")
# Print security information
if Config.ENABLE_SECURITY:
print("\nπ Security Configuration:")
print(f" Security: ENABLED")
print(f" Rate Limit: {Config.RATE_LIMIT_PER_MINUTE} requests/minute")
print(f" Master Key: {'β Configured' if Config.MASTER_KEY else 'β Not configured'}")
print(f" API Keys: {len([k for k in Config.API_KEYS if k.strip()])} configured")
if not Config.MASTER_KEY and not Config.API_KEYS:
print(" β οΈ WARNING: No API keys configured! Set MASTER_KEY or API_KEYS environment variable.")
else:
print("\nπ Security: DISABLED")
print(" All endpoints are publicly accessible")
yield
# Shutdown
print("Shutting down services...")
if app_state.qdrant_client:
await app_state.qdrant_client.close()
print("β Qdrant client closed")
if app_state.embedding_service and hasattr(app_state.embedding_service, 'executor'):
app_state.embedding_service.executor.shutdown(wait=True)
print("β Embedding service executor shutdown")
if app_state.document_manager and hasattr(app_state.document_manager, 'executor'):
app_state.document_manager.executor.shutdown(wait=True)
print("β Document manager executor shutdown")
print("β Shutdown complete")
# Initialize FastAPI app
app = FastAPI(
title="Enhanced RAG API with Dynamic Provider Selection",
description="OpenAI-compatible API for RAG with dynamic provider selection (OpenRouter/Groq) and document management",
version="1.0.0",
lifespan=lifespan
)
@app.get("/")
async def root():
return {
"message": "Enhanced RAG API with Dynamic Provider Selection",
"status": "running",
"security_enabled": Config.ENABLE_SECURITY,
"version": "1.0.0"
}
@app.get("/health")
async def health_check(api_key: str = Depends(verify_api_key)):
"""Health check endpoint"""
try:
# Test Qdrant connection
if app_state.qdrant_client:
collections = await app_state.qdrant_client.get_collections()
qdrant_status = "connected"
else:
qdrant_status = "not_initialized"
except Exception as e:
qdrant_status = f"error: {str(e)}"
# Test embedding service
if app_state.embedding_service is None:
embedding_health = {"status": "not_initialized", "error": "EmbeddingService is None"}
else:
try:
embedding_health = app_state.embedding_service.health_check()
except Exception as e:
embedding_health = {"status": "error", "error": str(e)}
# Test OpenAI service
if app_state.openai_service is None:
openai_health = {"status": "not_initialized", "error": "OpenAI service is None"}
else:
try:
# Test both providers if available
test_results = {}
if Config.OPENROUTER_API_KEY:
try:
client, models, provider = app_state.openai_service.get_client("openrouter")
test_response = client.chat.completions.create(
model=models[0],
messages=[{"role": "user", "content": "test"}],
max_tokens=1
)
test_results["openrouter"] = {"status": "healthy", "model": models[0]}
except Exception as e:
test_results["openrouter"] = {"status": "error", "error": str(e)}
if Config.GROQ_API_KEY:
try:
client, models, provider = app_state.openai_service.get_client("groq")
test_response = client.chat.completions.create(
model=models[0],
messages=[{"role": "user", "content": "test"}],
max_tokens=1
)
test_results["groq"] = {"status": "healthy", "model": models[0]}
except Exception as e:
test_results["groq"] = {"status": "error", "error": str(e)}
openai_health = {"status": "healthy", "providers": test_results}
except Exception as e:
openai_health = {"status": "error", "error": str(e)}
return {
"status": "healthy" if app_state.embedding_service is not None else "unhealthy",
"openai_service": openai_health,
"qdrant": qdrant_status,
"embedding_service": embedding_health,
"document_manager": "initialized" if app_state.document_manager else "not_initialized",
"collection": Config.COLLECTION_NAME,
"embedding_model": Config.EMBEDDING_MODEL,
"available_providers": {
"openrouter": bool(Config.OPENROUTER_API_KEY),
"groq": bool(Config.GROQ_API_KEY)
}
}
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest, api_key: str = Depends(verify_api_key)):
"""OpenAI-compatible chat completions endpoint with enhanced RAG and dynamic provider selection"""
if not app_state.openai_service:
raise HTTPException(status_code=500, detail="OpenAI service not initialized")
try:
# Get the last user message for retrieval
user_messages = [msg for msg in request.messages if msg.role == "user"]
if not user_messages:
raise HTTPException(status_code=400, detail="No user message found")
last_user_message = user_messages[-1].content
print(f"Processing query: {last_user_message[:100]}...")
# Retrieve relevant chunks using enhanced search
try:
relevant_results = await RAGService.retrieve_relevant_chunks(last_user_message)
print(f"Retrieved {len(relevant_results)} chunks")
except Exception as e:
print(f"Error in retrieval: {e}")
relevant_results = []
# Build context-aware prompt
if relevant_results:
context_prompt = RAGService.build_context_prompt(last_user_message, relevant_results)
enhanced_messages = request.messages[:-1] + [Message(role="user", content=context_prompt)]
print("Using context-enhanced prompt")
else:
enhanced_messages = request.messages
print("Using original prompt (no context)")
# Convert to OpenAI format
openai_messages = [{"role": msg.role, "content": msg.content} for msg in enhanced_messages]
print(f"Sending {len(openai_messages)} messages to OpenAI API")
if request.stream:
return StreamingResponse(
stream_chat_completion(openai_messages, request),
media_type="text/event-stream"
)
else:
return await create_chat_completion(openai_messages, request)
except HTTPException:
raise
except Exception as e:
print(f"Unexpected error in chat_completions: {e}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
async def create_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> ChatCompletionResponse:
"""Create a non-streaming chat completion using dynamic provider selection"""
try:
# Get async client with dynamic provider selection
client, models, selected_provider = await app_state.openai_service.get_async_client(request.provider)
# Select model
if request.model == "auto" or not request.model:
selected_model = random.choice(models)
else:
selected_model = request.model
print(f"Using provider: {selected_provider}, model: {selected_model}")
response = await client.chat.completions.create(
model=selected_model,
messages=messages,
max_tokens=request.max_tokens,
temperature=request.temperature,
top_p=request.top_p,
stream=False
)
result = ChatCompletionResponse(
id=response.id,
created=response.created,
model=f"{selected_provider}:{response.model}", # Include provider in model name
choices=[{
"index": choice.index,
"message": {
"role": choice.message.role,
"content": choice.message.content
},
"finish_reason": choice.finish_reason
} for choice in response.choices],
usage={
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens
} if response.usage else None
)
return result
except Exception as e:
print(f"Error in create_chat_completion: {e}")
raise HTTPException(status_code=500, detail=f"Error calling OpenAI API: {str(e)}")
async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> AsyncGenerator[str, None]:
"""Stream chat completion responses using dynamic provider selection"""
try:
# Get async client with dynamic provider selection
client, models, selected_provider = await app_state.openai_service.get_async_client(request.provider)
# Select model
if request.model == "auto" or not request.model:
selected_model = random.choice(models)
else:
selected_model = request.model
print(f"Using provider: {selected_provider}, model: {selected_model}")
stream = await client.chat.completions.create(
model=selected_model,
messages=messages,
max_tokens=request.max_tokens,
temperature=request.temperature,
top_p=request.top_p,
stream=True
)
async for chunk in stream:
if chunk.choices and len(chunk.choices) > 0:
choice = chunk.choices[0]
if choice.delta:
chunk_response = ChatCompletionChunk(
id=chunk.id,
created=chunk.created,
model=f"{selected_provider}:{chunk.model}", # Include provider in model name
choices=[{
"index": choice.index,
"delta": {
"role": choice.delta.role if choice.delta.role else None,
"content": choice.delta.content if choice.delta.content else None
},
"finish_reason": choice.finish_reason
}]
)
yield f"data: {chunk_response.model_dump_json()}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
print(f"Error in streaming: {e}")
error_chunk = {
"error": {
"message": str(e),
"type": "internal_error"
}
}
yield f"data: {json.dumps(error_chunk)}\n\n"
# Document management endpoints
@app.post("/v1/documents/upload")
async def upload_document(
file: UploadFile = File(...),
metadata: str = None,
api_key: str = Depends(verify_api_key)
):
"""Upload a PDF document"""
try:
if not app_state.document_manager:
raise HTTPException(status_code=500, detail="Document manager not initialized")
# Validate file type
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="Only PDF files are supported")
# Parse metadata if provided
parsed_metadata = {}
if metadata:
try:
parsed_metadata = json.loads(metadata)
except json.JSONDecodeError:
raise HTTPException(status_code=400, detail="Invalid metadata JSON")
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
shutil.copyfileobj(file.file, tmp_file)
tmp_path = tmp_file.name
try:
# Add document to the collection
document_id = await app_state.document_manager.add_document(
file_path=tmp_path,
metadata={
**parsed_metadata,
"original_filename": file.filename,
"upload_timestamp": datetime.now().isoformat()
}
)
if not document_id:
raise HTTPException(status_code=500, detail="Failed to add document")
return {
"message": "Document uploaded successfully",
"document_id": document_id,
"filename": file.filename
}
finally:
# Clean up temporary file
os.unlink(tmp_path)
except HTTPException:
raise
except Exception as e:
print(f"Error uploading document: {e}")
raise HTTPException(status_code=500, detail=f"Error uploading document: {str(e)}")
@app.post("/v1/documents/search")
async def search_documents(request: DocumentSearchRequest, api_key: str = Depends(verify_api_key)):
"""Search for documents"""
try:
if not app_state.document_manager:
raise HTTPException(status_code=500, detail="Document manager not initialized")
results = await app_state.document_manager.search_documents(
query=request.query,
limit=request.limit,
min_score=request.min_score
)
return {
"query": request.query,
"results": results,
"count": len(results)
}
except Exception as e:
print(f"Error searching documents: {e}")
raise HTTPException(status_code=500, detail=f"Error searching documents: {str(e)}")
@app.get("/v1/documents/list")
async def list_documents(api_key: str = Depends(verify_api_key)):
"""List all documents"""
try:
if not app_state.document_manager:
raise HTTPException(status_code=500, detail="Document manager not initialized")
documents = await app_state.document_manager.list_documents()
return {
"documents": documents,
"count": len(documents)
}
except Exception as e:
print(f"Error listing documents: {e}")
raise HTTPException(status_code=500, detail=f"Error listing documents: {str(e)}")
@app.delete("/v1/documents/{document_id}")
async def delete_document(document_id: str, api_key: str = Depends(verify_api_key)):
"""Delete a document"""
try:
if not app_state.document_manager:
raise HTTPException(status_code=500, detail="Document manager not initialized")
success = await app_state.document_manager.delete_document(document_id)
if not success:
raise HTTPException(status_code=404, detail="Document not found")
return {"message": "Document deleted successfully", "document_id": document_id}
except HTTPException:
raise
except Exception as e:
print(f"Error deleting document: {e}")
raise HTTPException(status_code=500, detail=f"Error deleting document: {str(e)}")
# Legacy compatibility endpoints
@app.post("/v1/embeddings/add")
async def add_document_legacy(content: str, metadata: Optional[Dict] = None, api_key: str = Depends(verify_api_key)):
"""Legacy endpoint for adding documents (text content)"""
try:
if not app_state.embedding_service or not app_state.qdrant_client:
raise HTTPException(status_code=500, detail="Services not initialized")
await app_state.document_manager._ensure_collection_exists()
embedding = await app_state.embedding_service.get_document_embedding(content)
point = PointStruct(
id=str(uuid.uuid4()),
vector=embedding,
payload={
"content": content,
"metadata": metadata or {},
"timestamp": datetime.now().isoformat()
}
)
await app_state.qdrant_client.upsert(
collection_name=Config.COLLECTION_NAME,
points=[point]
)
return {"message": "Document added successfully", "id": point.id}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error adding document: {str(e)}")
@app.get("/v1/collections/info")
async def get_collection_info(api_key: str = Depends(verify_api_key)):
"""Get information about the collection"""
try:
if app_state.qdrant_client is None:
raise HTTPException(status_code=500, detail="Qdrant client is not initialized")
await app_state.document_manager._ensure_collection_exists()
collection_info = await app_state.qdrant_client.get_collection(Config.COLLECTION_NAME)
return {
"name": Config.COLLECTION_NAME,
"vectors_count": collection_info.vectors_count,
"status": collection_info.status,
"vector_size": app_state.embedding_service.dimension if app_state.embedding_service else "unknown"
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error getting collection info: {str(e)}")
# New endpoint to get available providers and models
@app.get("/v1/providers")
async def get_providers(api_key: str = Depends(verify_api_key)):
"""Get available providers and their models"""
try:
if not app_state.openai_service:
raise HTTPException(status_code=500, detail="OpenAI service not initialized")
available_providers = {}
if Config.OPENROUTER_API_KEY:
available_providers["openrouter"] = {
"status": "available",
"models": OPENROUTER_MODELS
}
else:
available_providers["openrouter"] = {
"status": "unavailable",
"reason": "API key not provided"
}
if Config.GROQ_API_KEY:
available_providers["groq"] = {
"status": "available",
"models": GROQ_MODELS
}
else:
available_providers["groq"] = {
"status": "unavailable",
"reason": "API key not provided"
}
return {
"providers": available_providers,
"default_selection": "random"
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error getting providers: {str(e)}")
# Security Management Endpoints
@app.get("/v1/security/info")
async def get_security_info() -> SecurityInfo:
"""Get security configuration information (public endpoint)"""
return SecurityInfo(
security_enabled=Config.ENABLE_SECURITY,
rate_limit_per_minute=Config.RATE_LIMIT_PER_MINUTE,
has_master_key=bool(Config.MASTER_KEY),
configured_keys_count=len([k for k in Config.API_KEYS if k.strip()])
)
@app.post("/v1/security/generate-key")
async def generate_api_key(
request: APIKeyRequest,
master_key: str = Depends(verify_master_key)
) -> APIKeyResponse:
"""Generate a new API key (requires master key)"""
try:
new_key = Config.generate_api_key()
return APIKeyResponse(
api_key=new_key,
description=request.description,
created_at=datetime.now().isoformat(),
status="active"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating API key: {str(e)}")
@app.post("/v1/security/validate-key")
async def validate_api_key_endpoint(
api_key: str = Depends(verify_api_key)
) -> Dict[str, Any]:
"""Validate an API key"""
return {
"valid": True,
"key_type": "master" if api_key == Config.MASTER_KEY else "standard",
"validated_at": datetime.now().isoformat()
}
@app.get("/v1/security/rate-limit-status")
async def get_rate_limit_status(
request: Request,
api_key: str = Depends(verify_api_key)
) -> Dict[str, Any]:
"""Get current rate limit status"""
client_ip = request.client.host
# Get current minute requests
now = datetime.now()
minute_key = now.strftime("%Y-%m-%d %H:%M")
current_requests = 0
if client_ip in rate_limiter.requests:
current_requests = rate_limiter.requests[client_ip].get(minute_key, 0)
return {
"client_ip": client_ip,
"current_requests": current_requests,
"limit_per_minute": Config.RATE_LIMIT_PER_MINUTE,
"remaining_requests": max(0, Config.RATE_LIMIT_PER_MINUTE - current_requests),
"reset_at": f"{minute_key}:00",
"is_blocked": client_ip in rate_limiter.blocked_ips
}
# Admin endpoints for IP management
@app.post("/v1/admin/block-ip/{ip}")
async def block_ip(
ip: str,
master_key: str = Depends(verify_master_key)
) -> Dict[str, str]:
"""Block an IP address (requires master key)"""
rate_limiter.block_ip(ip)
return {"message": f"IP {ip} has been blocked", "blocked_at": datetime.now().isoformat()}
@app.post("/v1/admin/unblock-ip/{ip}")
async def unblock_ip(
ip: str,
master_key: str = Depends(verify_master_key)
) -> Dict[str, str]:
"""Unblock an IP address (requires master key)"""
rate_limiter.unblock_ip(ip)
return {"message": f"IP {ip} has been unblocked", "unblocked_at": datetime.now().isoformat()}
@app.get("/v1/admin/blocked-ips")
async def get_blocked_ips(
master_key: str = Depends(verify_master_key)
) -> Dict[str, Any]:
"""Get list of blocked IPs (requires master key)"""
return {
"blocked_ips": list(rate_limiter.blocked_ips),
"count": len(rate_limiter.blocked_ips)
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |