File size: 12,142 Bytes
5e88f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import math
from pathlib import Path
import random

import detectron2.data.transforms as DT
import einops
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from PIL import Image
from detectron2.data import detection_utils as d2_utils
from detectron2.structures import Instances, BitMasks
from torch.utils.data import Dataset

from utils.data import read_flow, read_flo


def load_flow_tensor(path, resize=None, normalize=True, align_corners=True):
    """
    Load flow, scale the pixel values according to the resized scale.
    If normalize is true, return rescaled in normalized pixel coordinates
    where pixel coordinates are in range [-1, 1].
    NOTE: RAFT USES ALIGN_CORNERS=TRUE SO WE NEED TO ACCOUNT FOR THIS
    Returns (2, H, W) float32
    """
    flow = read_flo(path).astype(np.float32)
    H, W, _ = flow.shape
    h, w = (H, W) if resize is None else resize
    u, v = flow[..., 0], flow[..., 1]
    if normalize:
        if align_corners:
            u = 2.0 * u / (W - 1)
            v = 2.0 * v / (H - 1)
        else:
            u = 2.0 * u / W
            v = 2.0 * v / H
    else:
        h, w = resize
        u = w * u / W
        v = h * v / H

    if h != H or w !=W:
        u = Image.fromarray(u).resize((w, h), Image.ANTIALIAS)
        v = Image.fromarray(v).resize((w, h), Image.ANTIALIAS)
        u, v = np.array(u), np.array(v)
    return torch.from_numpy(np.stack([u, v], axis=0))


class FlowPairDetectron(Dataset):
    def __init__(self, data_dir, resolution, to_rgb=False, size_divisibility=None, enable_photo_aug=False, flow_clip=1., norm=True, read_big=True, force1080p=False, flow_res=None):
        self.eval = eval
        self.to_rgb = to_rgb
        self.data_dir = data_dir
        self.flow_dir = {k: [e for e in v if e.shape[0] > 0] for k, v in data_dir[0].items()}
        self.flow_dir = {k: v for k, v in self.flow_dir.items() if len(v) > 0}
        self.resolution = resolution
        self.size_divisibility = size_divisibility
        self.ignore_label = -1
        self.transforms = DT.AugmentationList([
            DT.Resize(self.resolution, interp=Image.BICUBIC),
        ])
        self.photometric_aug = T.Compose([
            T.RandomApply(torch.nn.ModuleList([T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)]),
                          p=0.8),
            T.RandomGrayscale(p=0.2),
        ]) if enable_photo_aug else None
        self.flow_clip=flow_clip
        self.norm_flow=norm
        self.read_big = read_big
        self.force1080p_transforms = None
        if force1080p:
            self.force1080p_transforms = DT.AugmentationList([
                DT.Resize((1088, 1920), interp=Image.BICUBIC),
            ])
        self.big_flow_resolution = flow_res

    def __len__(self):
        return sum([cat.shape[0] for cat in next(iter(self.flow_dir.values()))]) if len(
            self.flow_dir.values()) > 0 else 0

    def __getitem__(self, idx):

        dataset_dicts = []

        random_gap = random.choice(list(self.flow_dir.keys()))
        flowgaps = self.flow_dir[random_gap]
        vid = random.choice(flowgaps)
        flos = random.choice(vid)
        dataset_dict = {}

        fname = Path(flos[0]).stem
        dname = Path(flos[0]).parent.name
        suffix = '.png' if 'CLEVR' in fname else '.jpg'
        rgb_dir = (self.data_dir[1] / dname / fname).with_suffix(suffix)
        gt_dir = (self.data_dir[2] / dname / fname).with_suffix('.png')

        flo0 = einops.rearrange(read_flow(str(flos[0]), self.resolution, self.to_rgb), 'c h w -> h w c')
        flo1 = einops.rearrange(read_flow(str(flos[1]), self.resolution, self.to_rgb), 'c h w -> h w c')
        if self.big_flow_resolution is not None:
            flo0_big = einops.rearrange(read_flow(str(flos[0]), self.big_flow_resolution, self.to_rgb), 'c h w -> h w c')
            flo1_big = einops.rearrange(read_flow(str(flos[1]), self.big_flow_resolution, self.to_rgb), 'c h w -> h w c')
        rgb = d2_utils.read_image(rgb_dir).astype(np.float32)
        original_rgb = torch.as_tensor(np.ascontiguousarray(np.transpose(rgb, (2, 0, 1)).clip(0., 255.))).float()
        if self.read_big:
            rgb_big = d2_utils.read_image(str(rgb_dir).replace('480p', '1080p')).astype(np.float32)
            rgb_big = (torch.as_tensor(np.ascontiguousarray(rgb_big))[:, :, :3]).permute(2, 0, 1).clamp(0., 255.)
            if self.force1080p_transforms is not None:
                rgb_big = F.interpolate(rgb_big[None], size=(1080, 1920), mode='bicubic').clamp(0., 255.)[0]

        # print('not here', rgb.min(), rgb.max())
        input = DT.AugInput(rgb)

        # Apply the augmentation:
        preprocessing_transforms = self.transforms(input)  # type: DT.Transform
        rgb = input.image
        if self.photometric_aug:
            rgb_aug = Image.fromarray(rgb.astype(np.uint8))
            rgb_aug = self.photometric_aug(rgb_aug)
            rgb_aug = d2_utils.convert_PIL_to_numpy(rgb_aug, 'RGB')
            rgb_aug = np.transpose(rgb_aug, (2, 0, 1)).astype(np.float32)
        rgb = np.transpose(rgb, (2, 0, 1))
        rgb = rgb.clip(0., 255.)
        # print('here', rgb.min(), rgb.max())
        d2_utils.check_image_size(dataset_dict, flo0)
        if gt_dir.exists():
            sem_seg_gt = d2_utils.read_image(str(gt_dir))
            sem_seg_gt = preprocessing_transforms.apply_segmentation(sem_seg_gt)
            # sem_seg_gt = cv2.resize(sem_seg_gt, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_NEAREST)
            if sem_seg_gt.ndim == 3:
                sem_seg_gt = sem_seg_gt[:, :, 0]
            if sem_seg_gt.max() == 255:
                sem_seg_gt = (sem_seg_gt > 128).astype(int)
        else:
            sem_seg_gt = np.zeros((self.resolution[0], self.resolution[1]))


        gwm_dir = (Path(str(self.data_dir[2]).replace('Annotations', 'gwm')) / dname / fname).with_suffix('.png')
        if gwm_dir.exists():
            gwm_seg_gt = d2_utils.read_image(str(gwm_dir))
            gwm_seg_gt = preprocessing_transforms.apply_segmentation(gwm_seg_gt)
            gwm_seg_gt = np.array(gwm_seg_gt)
            # gwm_seg_gt = cv2.resize(gwm_seg_gt, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_NEAREST)
            if gwm_seg_gt.ndim == 3:
                gwm_seg_gt = gwm_seg_gt[:, :, 0]
            if gwm_seg_gt.max() == 255:
                gwm_seg_gt[gwm_seg_gt == 255] = 1
        else:
            gwm_seg_gt = None

        if sem_seg_gt is None:
            raise ValueError(
                "Cannot find 'sem_seg_file_name' for semantic segmentation dataset {}.".format(
                    dataset_dict["file_name"]
                )
            )

        # Pad image and segmentation label here!
        if self.to_rgb:
            flo0 = torch.as_tensor(np.ascontiguousarray(flo0.transpose(2, 0, 1))) / 2 + .5
            flo0 = flo0 * 255
            flo1 = torch.as_tensor(np.ascontiguousarray(flo1.transpose(2, 0, 1))) / 2 + .5
            flo1 = flo1 * 255
            if self.big_flow_resolution is not None:
                flo0_big = torch.as_tensor(np.ascontiguousarray(flo0_big.transpose(2, 0, 1))) / 2 + .5
                flo0_big = flo0_big * 255
                flo1_big = torch.as_tensor(np.ascontiguousarray(flo1_big.transpose(2, 0, 1))) / 2 + .5
                flo1_big = flo1_big * 255
        else:
            flo0 = torch.as_tensor(np.ascontiguousarray(flo0.transpose(2, 0, 1)))
            flo1 = torch.as_tensor(np.ascontiguousarray(flo1.transpose(2, 0, 1)))

            if self.norm_flow:
                flo0 = flo0 / (flo0 ** 2).sum(0).max().sqrt()
                flo1 = flo1 / (flo1 ** 2).sum(0).max().sqrt()

            flo0 = flo0.clip(-self.flow_clip, self.flow_clip)
            flo1 = flo1.clip(-self.flow_clip, self.flow_clip)

            if self.big_flow_resolution is not None:
                flo0_big = torch.as_tensor(np.ascontiguousarray(flo0_big.transpose(2, 0, 1)))
                flo1_big = torch.as_tensor(np.ascontiguousarray(flo1_big.transpose(2, 0, 1)))
                if self.norm_flow:
                    flo0_big = flo0_big / (flo0_big ** 2).sum(0).max().sqrt()
                    flo1_big = flo1_big / (flo1_big ** 2).sum(0).max().sqrt()
                flo0_big = flo0_big.clip(-self.flow_clip, self.flow_clip)
                flo1_big = flo1_big.clip(-self.flow_clip, self.flow_clip)

        rgb = torch.as_tensor(np.ascontiguousarray(rgb))
        if self.photometric_aug:
            rgb_aug = torch.as_tensor(np.ascontiguousarray(rgb_aug))

        if sem_seg_gt is not None:
            sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long"))
        if gwm_seg_gt is not None:
            gwm_seg_gt = torch.as_tensor(gwm_seg_gt.astype("long"))

        if self.size_divisibility > 0:
            image_size = (flo0.shape[-2], flo0.shape[-1])
            padding_size = [
                0,
                int(self.size_divisibility * math.ceil(image_size[1] // self.size_divisibility)) - image_size[1],
                0,
                int(self.size_divisibility * math.ceil(image_size[0] // self.size_divisibility)) - image_size[0],
            ]
            flo0 = F.pad(flo0, padding_size, value=0).contiguous()
            flo1 = F.pad(flo1, padding_size, value=0).contiguous()
            rgb = F.pad(rgb, padding_size, value=128).contiguous()
            if self.photometric_aug:
                rgb_aug = F.pad(rgb_aug, padding_size, value=128).contiguous()
            if sem_seg_gt is not None:
                sem_seg_gt = F.pad(sem_seg_gt, padding_size, value=self.ignore_label).contiguous()
            if gwm_seg_gt is not None:
                gwm_seg_gt = F.pad(gwm_seg_gt, padding_size, value=self.ignore_label).contiguous()

        image_shape = (rgb.shape[-2], rgb.shape[-1])  # h, w

        # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
        # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
        # Therefore it's important to use torch.Tensor.
        dataset_dict["flow"] = flo0
        dataset_dict["flow_2"] = flo1

        # dataset_dict["flow_fwd"] = flo_norm_fwd
        # dataset_dict["flow_bwd"] = flo_norm_bwd
        # dataset_dict["flow_rgb"] = rgb_flo0
        # dataset_dict["flow_gap"] = gap

        dataset_dict["rgb"] = rgb
        dataset_dict["original_rgb"] = original_rgb
        if self.read_big:
            dataset_dict["RGB_BIG"] = rgb_big
        if self.photometric_aug:
            dataset_dict["rgb_aug"] = rgb_aug

        if self.big_flow_resolution is not None:
            dataset_dict["flow_big"] = flo0_big
            dataset_dict["flow_big_2"] = flo1_big


        if sem_seg_gt is not None:
            dataset_dict["sem_seg"] = sem_seg_gt.long()

        if gwm_seg_gt is not None:
            dataset_dict["gwm_seg"] = gwm_seg_gt.long()

        if "annotations" in dataset_dict:
            raise ValueError("Semantic segmentation dataset should not have 'annotations'.")

        # Prepare per-category binary masks
        if sem_seg_gt is not None:
            sem_seg_gt = sem_seg_gt.numpy()
            instances = Instances(image_shape)
            classes = np.unique(sem_seg_gt)
            # remove ignored region
            classes = classes[classes != self.ignore_label]
            instances.gt_classes = torch.tensor(classes, dtype=torch.int64)

            masks = []
            for class_id in classes:
                masks.append(sem_seg_gt == class_id)

            if len(masks) == 0:
                # Some image does not have annotation (all ignored)
                instances.gt_masks = torch.zeros((0, sem_seg_gt.shape[-2], sem_seg_gt.shape[-1]))
            else:
                masks = BitMasks(
                    torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks])
                )
                instances.gt_masks = masks.tensor

            dataset_dict["instances"] = instances
            dataset_dicts.append(dataset_dict)

        return dataset_dicts