File size: 10,182 Bytes
5017f0e
da2ea29
38e090f
da2ea29
 
 
5017f0e
 
 
32f9f47
83a4675
7d55088
da2ea29
 
 
 
 
 
 
 
 
 
 
83a4675
7d55088
 
 
 
 
 
 
 
 
 
 
da2ea29
 
 
 
 
 
 
32f9f47
 
 
 
 
 
 
 
 
 
 
 
83a4675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5017f0e
da2ea29
5017f0e
 
 
 
 
 
32f9f47
83a4675
38e090f
32f9f47
1211632
83a4675
 
 
 
 
1211632
 
 
 
 
83a4675
658f973
83a4675
 
 
d3af935
 
 
 
 
 
 
 
83a4675
d3af935
 
 
 
 
 
 
 
 
 
 
83a4675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5017f0e
 
 
 
 
 
 
 
38e090f
 
 
 
 
 
 
5017f0e
 
38e090f
 
 
 
 
 
 
 
 
5017f0e
 
 
38e090f
 
 
 
 
 
32f9f47
 
38e090f
32f9f47
 
38e090f
 
 
7d55088
 
 
 
da2ea29
5017f0e
 
83a4675
da2ea29
 
 
e0c01fe
da2ea29
 
 
 
 
 
 
 
 
 
 
 
 
5017f0e
 
da2ea29
 
5017f0e
 
 
d3af935
83a4675
 
 
 
5017f0e
 
 
38e090f
7d55088
 
5017f0e
da2ea29
 
 
38e090f
da2ea29
 
7d55088
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import numpy as np
import PIL
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import torch
import easyocr
import os
from pathlib import Path
import cv2
import pandas as pd
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import matplotlib.pyplot as plt

#torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/BeautyIsTruthTruthisBeauty.JPG', 'BeautyIsTruthTruthisBeauty.JPG')
#torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/PleaseRepeatLouder.jpg', 'PleaseRepeatLouder.jpg')
#torch.hub.download_url_to_file('https://github.com/AaronCWacker/Yggdrasil/blob/main/images/ProhibitedInWhiteHouse.JPG', 'ProhibitedInWhiteHouse.JPG')

torch.hub.download_url_to_file('https://raw.githubusercontent.com/AaronCWacker/Yggdrasil/master/images/20-Books.jpg','20-Books.jpg')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/english.png', 'COVID.png')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/chinese.jpg', 'chinese.jpg')
torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/japanese.jpg', 'japanese.jpg')
torch.hub.download_url_to_file('https://i.imgur.com/mwQFd7G.jpeg', 'Hindi.jpeg')


def plot_temporal_profile(temporal_profile):
    fig = plt.figure()
    for i, profile in enumerate(temporal_profile):
        x, y = zip(*profile)
        plt.plot(x, y, label=f"Box {i+1}")
    plt.title("Temporal Profiles")
    plt.xlabel("Time (s)")
    plt.ylabel("Value")
    plt.legend()
    return fig

def draw_boxes(image, bounds, color='yellow', width=2):
    draw = ImageDraw.Draw(image)
    for bound in bounds:
        p0, p1, p2, p3 = bound[0]
        draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width)
    return image

def box_size(box):
    points = box[0]
    if len(points) == 4:
        x1, y1 = points[0]
        x2, y2 = points[2]
        return abs(x1 - x2) * abs(y1 - y2)
    else:
        return 0

def box_position(box):
    return (box[0][0][0] + box[0][2][0]) / 2, (box[0][0][1] + box[0][2][1]) / 2

def filter_temporal_profiles(temporal_profiles, period_index):
    filtered_profiles = []
    for profile in temporal_profiles:
        filtered_profile = []
        for t, text in profile:
            # Remove all non-digit characters from text
            filtered_text = ''.join(filter(str.isdigit, text))
            # Insert period at the specified index
            filtered_text = filtered_text[:period_index] + "." + filtered_text[period_index:]
            try:
                filtered_value = float(filtered_text)
            except ValueError:
                continue
            filtered_profile.append((t, filtered_value))
        filtered_profiles.append(filtered_profile)
    return filtered_profiles


device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-printed')
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-large-printed').to(device)

def inference(video, lang, time_step, full_scan, number_filter, use_trocr, period_index):
    output = 'results.mp4'
    reader = easyocr.Reader(lang)
    bounds = []   
    vidcap = cv2.VideoCapture(video)
    success, frame = vidcap.read()
    count = 0
    frame_rate = vidcap.get(cv2.CAP_PROP_FPS)
    output_frames = []
    temporal_profiles = []
    compress_mp4 = False

    # Get the positions of the largest boxes in the first frame
    bounds = reader.readtext(frame)
    for i in reversed(range(len(bounds))):
        box = bounds[i]
        # Remove box if it doesn't contain a number
        if not any(char.isdigit() for char in box[1]):
            bounds.pop(i)
    im = PIL.Image.fromarray(frame)
    im_with_boxes = draw_boxes(im, bounds)
    largest_boxes = sorted(bounds, key=lambda x: box_size(x), reverse=True)
    positions = [box_position(b) for b in largest_boxes]
    temporal_profiles = [[] for _ in range(len(largest_boxes))]

    # Match bboxes to position and store the text read by OCR
    while success:
        if count % (int(frame_rate * time_step)) == 0:
            if full_scan:
                bounds = reader.readtext(frame)
                for box in bounds:
                    bbox_pos = box_position(box)
                    for i, position in enumerate(positions):
                        distance = np.linalg.norm(np.array(bbox_pos) - np.array(position))
                        if distance < 50:
                            temporal_profiles[i].append((count / frame_rate, box[1]))
                            break
            else:
                for i, box in enumerate(largest_boxes):
                    x1, y1 = box[0][0]
                    x2, y2 = box[0][2]
                    box_width = x2 - x1
                    box_height = y2 - y1
                    ratio = 0.2
                    x1 = max(0, int(x1 - ratio * box_width))
                    x2 = min(frame.shape[1], int(x2 + ratio * box_width))
                    y1 = max(0, int(y1 - ratio * box_height))
                    y2 = min(frame.shape[0], int(y2 + ratio * box_height))
                    cropped_frame = frame[y1:y2, x1:x2]
                    if use_trocr:
                        pixel_values = processor(images=cropped_frame, return_tensors="pt").pixel_values
                        generated_ids = model.generate(pixel_values.to(device))
                        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
                        temporal_profiles[i].append((count / frame_rate, generated_text))
                    else:
                        text = reader.readtext(cropped_frame)
                        if text:
                            temporal_profiles[i].append((count / frame_rate, text[0][1]))
            
            im = PIL.Image.fromarray(frame)
            im_with_boxes = draw_boxes(im, bounds)
            output_frames.append(np.array(im_with_boxes))

        success, frame = vidcap.read()
        count += 1

    if number_filter:
        # Filter the temporal profiles by removing non-matching characters and converting to floats
        temporal_profiles = filter_temporal_profiles(temporal_profiles, int(period_index))

    # Default resolutions of the frame are obtained. The default resolutions are system dependent.
    # We convert the resolutions from float to integer.
    width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames_total = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))

    # Define the codec and create VideoWriter object.
    if compress_mp4:
        temp = f"{Path(output).stem}_temp{Path(output).suffix}"
        output_video = cv2.VideoWriter(
            temp, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
        )
    else:
        output_video = cv2.VideoWriter(output, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
    for frame in output_frames:
        output_video.write(frame)

    # Draw boxes with box indices in the first frame of the output video
    im = Image.fromarray(output_frames[0])
    draw = ImageDraw.Draw(im)
    font_size = 30
    font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
    for i, box in enumerate(largest_boxes):
        draw.text((box_position(box)), f"Box {i+1}", fill='red', font=ImageFont.truetype(font_path, font_size))
    
    output_video.release()
    vidcap.release()

    if compress_mp4:
        # Compressing the video for smaller size and web compatibility.
        os.system(
            f"ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 1 -c:a aac -f mp4 /dev/null && ffmpeg -y -i {temp} -c:v libx264 -b:v 5000k -minrate 1000k -maxrate 8000k -pass 2 -c:a aac -movflags faststart {output}"
        )
        os.system(f"rm -rf {temp} ffmpeg2pass-0.log ffmpeg2pass-0.log.mbtree")
    
    # Format temporal profiles as a DataFrame
    df_list = []
    for i, profile in enumerate(temporal_profiles):
        for t, text in profile:
            df_list.append({"Box": f"Box {i+1}", "Time (s)": t, "Text": text})
        df_list.append({"Box": f"", "Time (s)": "", "Text": ""})
    df = pd.concat([pd.DataFrame(df_list)])

    # generate the plot of temporal profile
    plot_fig = plot_temporal_profile(temporal_profiles)
    return output, im, plot_fig, df


title = '🖼️Video to Multilingual OCR👁️Gradio'
description = 'Multilingual OCR which works conveniently on all devices in multiple languages. Adjust time-step for inference and the scan mode according to your requirement. For `Full Screen Scan`, model scan the whole image if flag is ture, while scan only the box detected at the first video frame; this accelerate the inference while detecting the fixed box.'
article = "<p style='text-align: center'></p>"

examples = [
['test.mp4',['en'],10,False,True,True,1]
]

css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
choices = [
    "ch_sim",
    "ch_tra",
    "de",
    "en",
    "es",
    "ja",
    "hi",
    "ru"
]


gr.Interface(
    inference,
    [
        gr.inputs.Video(label='Input Video'),
        gr.inputs.CheckboxGroup(choices, type="value", default=['en'], label='Language'),
        gr.inputs.Number(label='Time Step (in seconds)', default=1.0),
        gr.inputs.Checkbox(label='Full Screen Scan'),
        gr.inputs.Checkbox(label='Use TrOCR large (this is only available when Full Screen Scan is disable)'),
        gr.inputs.Checkbox(label='Number Filter (remove non-digit char and insert period)'),
        gr.inputs.Textbox(label="period position",default=1)
    ],
    [
        gr.outputs.Video(label='Output Video'),
        gr.outputs.Image(label='Output Preview', type='numpy'),
        gr.Plot(label='Temporal Profile'),
        gr.outputs.Dataframe(headers=['Box', 'Time (s)', 'Text'], type='pandas')
    ],
    title=title,
    description=description,
    article=article,
    examples=examples,
    css=css,
    enable_queue=True
).launch(debug=True, share=True)