File size: 3,732 Bytes
e2a72e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f22be
e2a72e7
d6f22be
e2a72e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from typing import Optional

import gradio as gr
import numpy as np
import torch
from PIL import Image
import io


import base64, os
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
import torch
from PIL import Image

yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
platform = 'pc'
if platform == 'pc':
    draw_bbox_config = {
        'text_scale': 0.8,
        'text_thickness': 2,
        'text_padding': 2,
        'thickness': 2,
    }
elif platform == 'web':
    draw_bbox_config = {
        'text_scale': 0.8,
        'text_thickness': 2,
        'text_padding': 3,
        'thickness': 3,
    }
elif platform == 'mobile':
    draw_bbox_config = {
        'text_scale': 0.8,
        'text_thickness': 2,
        'text_padding': 3,
        'thickness': 3,
    }



MARKDOWN = """
# SEER: Semantic Element Extraction and Region parsing

SEER enhances GPT-4V's capability by extracting semantic meanings from UI elements and accurately identifying interactable regions, enabling region-grounded actions in multimodal environments. 
"""

DEVICE = torch.device('cuda')

# @spaces.GPU
# @torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
    image_input,
    box_threshold,
    iou_threshold
) -> Optional[Image.Image]:

    image_save_path = 'imgs/saved_image_demo.png'
    image_input.save(image_save_path)
    # import pdb; pdb.set_trace()

    ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
    text, ocr_bbox = ocr_bbox_rslt
    # print('prompt:', prompt)
    dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold)
    image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
    print('finish processing')
    parsed_content_list = '\n'.join(parsed_content_list)
    return image, str(parsed_content_list)



with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            image_input_component = gr.Image(
                type='pil', label='Upload image')
            # set the threshold for removing the bounding boxes with low confidence, default is 0.05
            box_threshold_component = gr.Slider(
                label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
            # set the threshold for removing the bounding boxes with large overlap, default is 0.1
            iou_threshold_component = gr.Slider(
                label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
            submit_button_component = gr.Button(
                value='Submit', variant='primary')
        with gr.Column():
            image_output_component = gr.Image(type='pil', label='Image Output')
            text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')

    submit_button_component.click(
        fn=process,
        inputs=[
            image_input_component,
            box_threshold_component,
            iou_threshold_component
        ],
        outputs=[image_output_component, text_output_component]
    )

# demo.launch(debug=False, show_error=True, share=True)
demo.launch(share=True, server_port=7861, server_name='0.0.0.0')