Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,890 Bytes
18d050b 952386b 18d050b 952386b 7020ed0 18d050b 7020ed0 18d050b 7020ed0 21ddbba 18d050b 5f3306d 18d050b 5f3306d 18d050b 3f7273c 18d050b 3f7273c b97569f 3f7273c 18d050b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from .mllm import MindOmniMLLM
from .image_decoder import OmniGen
import torch.nn as nn
from .image_decoder import Phi3DecoderLayer, ImageDecoderPipeline, OmniGenProcessor
import os
import torch
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
from typing import Union
from diffusers.utils import logging
from diffusers.models import AutoencoderKL
from transformers import AutoProcessor
import re
from qwen_vl_utils import process_vision_info
logger = logging.get_logger(__name__)
class MindOmniConnector(nn.Module):
def __init__(self, pre_config, post_config, layer_num: int = 2):
super().__init__()
connector_decoder = nn.ModuleList(
[Phi3DecoderLayer(post_config, layer_idx) for layer_idx in range(layer_num)]
)
self.connector = nn.ModuleList(
[nn.Linear(pre_config.hidden_size, post_config.hidden_size)] # qwen2.5vl-7b: 3584
)
self.connector.extend(connector_decoder)
class MindOmni:
def __init__(self, mllm, image_decoder, connector, vae, processor, mllm_processor, device: Union[str, torch.device] = None):
self.mllm = mllm
self.image_decoder = image_decoder
self.connector = connector
self.vae = vae
self.processor = processor
self.mllm_processor = mllm_processor
self.vae.to(torch.float32)
self.device = device
if device is None:
if torch.cuda.is_available():
self.device = torch.device("cuda")
elif torch.backends.mps.is_available():
self.device = torch.device("mps")
else:
logger.info("Don't detect any available GPUs, using CPU instead, this may take long time to generate image!!!")
self.device = torch.device("cpu")
@classmethod
def from_pretrained(cls, model_path):
model_path = snapshot_download(repo_id=model_path)
mllm = MindOmniMLLM.from_pretrained(os.path.join(model_path, 'mllm'))
image_decoder = OmniGen.from_pretrained(os.path.join(model_path, 'image_decoder'))
connector = MindOmniConnector(mllm.config, image_decoder.llm.config, 2).connector
connector_state = load_file(os.path.join(model_path, 'connector.safetensors'))
connector.load_state_dict(connector_state)
vae = AutoencoderKL.from_pretrained(os.path.join(model_path, 'vae'))
processor = OmniGenProcessor.from_pretrained(os.path.join(model_path, 'image_decoder'))
mllm_processor = AutoProcessor.from_pretrained(os.path.join(model_path, 'mllm'))
logger.info("MindOmni has been loaded.")
return cls(mllm, image_decoder, connector, vae, processor, mllm_processor)
def to(self, device: Union[str, torch.device] = None, dtype: Union[str, torch.device] = None):
if device is not None:
if isinstance(device, str):
device = torch.device(device)
self.mllm.to(device)
self.image_decoder.to(device)
self.connector.to(device)
self.vae.to(device)
self.device = device
if dtype is not None:
self.mllm.to(dtype)
self.image_decoder.to(dtype)
self.connector.to(dtype)
def eval(self):
self.mllm.eval()
self.image_decoder.eval()
self.connector.eval()
self.vae.eval()
@torch.no_grad()
def get_mllm_hidden_state(self, user_input, input_images, do_sample, temperature, max_new_tokens, only_understand=False, use_cot=False):
input_llm_images = input_images
processor = self.mllm_processor
model = self.mllm
if only_understand or not use_cot:
system_prompt = (
"You are a helpful assistant."
)
else:
system_prompt = (
"You are a helpful assistant. When the user requests an image, the assistant "
"first thinks about the reasoning process in the mind and then provides the user with concise prompt as the answer. "
"The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
"<think> reasoning process here </think><answer> answer here </answer>."
)
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": system_prompt},
],
},
{
"role": "user",
"content": [
{"type": "text", "text": "Generate an image according to the following instructions\n"},
{"type": "text", "text": user_input},
],
}
]
if input_llm_images is not None:
if only_understand:
assert len(input_llm_images) == 1, "only support single image when multimodal understanding"
messages[1]['content'][0] = {"type": "image", "image": input_llm_images[0]}
else:
user_input = f'<img><|image_1|></img> {user_input}'
messages[1]['content'][1] = {"type": "text", "text": user_input}
image_tags = re.findall(r'<\|image_\d+\|>', messages[1]['content'][1]['text'])
image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
pattern = r"<img><\|image_\d+\|></img>"
prompt_chunks = [chunk for chunk in re.split(pattern, messages[1]['content'][1]['text'])]
assert len(prompt_chunks) == len(input_llm_images) + 1
new_content = []
for idx, per_prompt in enumerate(prompt_chunks):
if idx != len(prompt_chunks) - 1:
item_text = {"type": "text", "text": per_prompt}
# resized_height, resized_width = input_images_shape[image_ids[idx] - 1]
image_path = input_llm_images[image_ids[idx] - 1]
# item_vit = {"type": "image", "image": image_path, "resized_height": resized_height, "resized_width": resized_width}
item_vit = {"type": "image", "image": image_path}
item_tag = {"type": "text", "text": f"<img>{image_tags[idx]}</img>"}
new_content.append(item_text)
new_content.append(item_vit)
new_content.append(item_tag)
else:
item_text = {"type": "text", "text": per_prompt}
new_content.append(item_text)
messages[1]['content'] = messages[1]['content'][:1] + new_content
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors='pt',
)
inputs = inputs.to(self.device)
if use_cot:
# Inference: Generation of the output
temperature = temperature if do_sample else None
generated_dict = model.generate(**inputs, do_sample=do_sample, temperature=temperature, max_new_tokens=max_new_tokens, output_hidden_states=True, return_dict_in_generate=True)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_dict.sequences)
]
output_hidden_state = [hidden_state[-1] for hidden_state in generated_dict.hidden_states]
context_hidden_state = torch.cat(output_hidden_state, dim=1)
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
prompt_ = output_text[0]
assistant_content = [
{
"role": "assistant",
"content": [
{"type": "text", "text": prompt_},
],
}
]
messages += assistant_content
else:
prompt_ = user_input
context_hidden_state = model(**inputs, output_hidden_states=True).hidden_states[-1]
return messages, prompt_, context_hidden_state
def generate_image(self, height, width, guidance_scale, inference_steps, separate_cfg_infer, offload_model, seed, max_input_image_size,
text, NEGATIVE_PROMPT, input_llm_images, do_sample, temperature, max_new_tokens, only_understand, use_cot=False,
cascade_thinking=False):
gen_pipe = ImageDecoderPipeline(self.vae, self.image_decoder, self.connector, self.processor)
message, prompt_, context_hidden_state = self.get_mllm_hidden_state(text, input_llm_images, do_sample, temperature, max_new_tokens, only_understand, use_cot=use_cot)
if cascade_thinking and use_cot:
answer_text = re.search(r'<answer>(.*)', prompt_, re.S)
think_text = re.search(r'<think>(.*?)</think>', prompt_, re.S)
if answer_text:
text = answer_text.group(1).strip()
elif think_text:
text = think_text.group(1).strip()
else:
text = prompt_.strip()
if len(text) > 0:
message, cascade_prompt_, context_hidden_state = self.get_mllm_hidden_state(
text, input_llm_images, do_sample, temperature, max_new_tokens, only_understand, use_cot=use_cot)
prompt_ = f'{prompt_}\n\ncascade_thinking:{cascade_prompt_}'
neg_message, neg_prompt_, neg_context_hidden_state = self.get_mllm_hidden_state(NEGATIVE_PROMPT, None, do_sample, temperature, max_new_tokens, only_understand, use_cot=False)
print(message)
output = gen_pipe(
context_hidden_state=context_hidden_state,
neg_context_hidden_state=neg_context_hidden_state,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=inference_steps,
separate_cfg_infer=separate_cfg_infer,
use_kv_cache=True,
offload_kv_cache=True,
offload_model=offload_model,
seed=seed,
max_input_image_size=max_input_image_size,
)
return output, prompt_
def generate_text(self, text, input_llm_images, do_sample, temperature, max_new_tokens, only_understand):
_, answer, _ = self.get_mllm_hidden_state(text, input_llm_images, do_sample, temperature, max_new_tokens, only_understand=True, use_cot=True)
return answer
|