Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,774 Bytes
18d050b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
from typing import List, Optional, Tuple, Union
import torch
from transformers.modeling_outputs import BaseModelOutputWithPast
from .modeling_phi3 import Phi3Model
from transformers.cache_utils import Cache, DynamicCache
from transformers.utils import logging
logger = logging.get_logger(__name__)
class Phi3Transformer(Phi3Model):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
We only modified the attention mask
Args:
config: Phi3Config
"""
def prefetch_layer(self, layer_idx: int, device: torch.device):
"Starts prefetching the next layer cache"
with torch.cuda.stream(self.prefetch_stream):
# Prefetch next layer tensors to GPU
for name, param in self.layers[layer_idx].named_parameters():
param.data = param.data.to(device, non_blocking=True)
def evict_previous_layer(self, layer_idx: int):
"Moves the previous layer cache to the CPU"
prev_layer_idx = layer_idx - 1
for name, param in self.layers[prev_layer_idx].named_parameters():
param.data = param.data.to("cpu", non_blocking=True)
def get_offlaod_layer(self, layer_idx: int, device: torch.device):
# init stream
if not hasattr(self, "prefetch_stream"):
self.prefetch_stream = torch.cuda.Stream()
# delete previous layer
torch.cuda.current_stream().synchronize()
self.evict_previous_layer(layer_idx)
# make sure the current layer is ready
torch.cuda.synchronize(self.prefetch_stream)
# load next layer
self.prefetch_layer((layer_idx + 1) % len(self.layers), device)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
offload_model: Optional[bool] = False,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
if attention_mask is not None and attention_mask.dim() == 3:
dtype = inputs_embeds.dtype
min_dtype = torch.finfo(dtype).min
attention_mask = (1 - attention_mask) * min_dtype
attention_mask = attention_mask.unsqueeze(1).to(inputs_embeds.dtype)
else:
raise Exception("attention_mask parameter was unavailable or invalid")
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
layer_idx = -1
for decoder_layer in self.layers:
layer_idx += 1
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
if offload_model and not self.training:
self.get_offlaod_layer(layer_idx, device=inputs_embeds.device)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
|