File size: 11,507 Bytes
18d050b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#  This code is based on OmniGen
from typing import List, Union
import gc

from PIL import Image
import torch
from diffusers.models import AutoencoderKL
from diffusers.utils import logging
import torch.nn as nn
from .processor import OmniGenProcessor
from .model import OmniGen
from .scheduler import OmniGenScheduler


logger = logging.get_logger(__name__)


class ImageDecoderPipeline:
    def __init__(
        self,
        vae: AutoencoderKL,
        model: OmniGen,
        connector: nn.Module,
        processor: OmniGenProcessor,
        device: Union[str, torch.device] = None,
    ):
        self.vae = vae
        self.model = model
        self.connector = connector
        self.processor = processor
        self.device = device

        if device is None:
            if torch.cuda.is_available():
                self.device = torch.device("cuda")
            elif torch.backends.mps.is_available():
                self.device = torch.device("mps")
            else:
                logger.info("Don't detect any available GPUs, using CPU instead, this may take long time to generate image!!!")
                self.device = torch.device("cpu")

        # self.model.to(torch.bfloat16)
        self.model.eval()
        self.vae.eval()

        self.model_cpu_offload = False

    def to(self, device: Union[str, torch.device]):
        if isinstance(device, str):
            device = torch.device(device)
        self.model.to(device)
        self.vae.to(device)
        self.device = device

    def vae_encode(self, x, dtype):
        if self.vae.config.shift_factor is not None:
            x = self.vae.encode(x).latent_dist.sample()
            x = (x - self.vae.config.shift_factor) * self.vae.config.scaling_factor
        else:
            x = self.vae.encode(x).latent_dist.sample().mul_(self.vae.config.scaling_factor)
        x = x.to(dtype)
        return x

    def move_to_device(self, data):
        if isinstance(data, list):
            return [x.to(self.device) for x in data]
        return data.to(self.device)

    def enable_model_cpu_offload(self):
        self.model_cpu_offload = True
        self.model.to("cpu")
        self.vae.to("cpu")
        if torch.cuda.is_available():
            torch.cuda.empty_cache()  # Clear VRAM
        gc.collect()  # Run garbage collection to free system RAM

    def disable_model_cpu_offload(self):
        self.model_cpu_offload = False
        self.model.to(self.device)
        self.vae.to(self.device)

    @torch.no_grad()
    def __call__(
        self,
        context_hidden_state: Union[str, List[str]] = None,
        neg_context_hidden_state: Union[str, List[str]] = None,
        height: int = 1024,
        width: int = 1024,
        num_inference_steps: int = 50,
        guidance_scale: float = 3,
        max_input_image_size: int = 1024,
        separate_cfg_infer: bool = True,
        offload_model: bool = False,
        use_kv_cache: bool = True,
        offload_kv_cache: bool = True,
        dtype: torch.dtype = torch.bfloat16,
        seed: int = None,
        output_type: str = "pil",
        tqdm_disable: bool = False,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            input_images (`List[str]` or `List[List[str]]`, *optional*):
                The list of input images. We will replace the "<|image_i|>" in prompt with the 1-th image in list.
            height (`int`, *optional*, defaults to 1024):
                The height in pixels of the generated image. The number must be a multiple of 16.
            width (`int`, *optional*, defaults to 1024):
                The width in pixels of the generated image. The number must be a multiple of 16.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            use_img_guidance (`bool`, *optional*, defaults to True):
                Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
            img_guidance_scale (`float`, *optional*, defaults to 1.6):
                Defined as equation 3 in [Instrucpix2pix](https://arxiv.org/pdf/2211.09800).
            max_input_image_size (`int`, *optional*, defaults to 1024): the maximum size of input image, which will be used to crop the input image to the maximum size
            separate_cfg_infer (`bool`, *optional*, defaults to False):
                Perform inference on images with different guidance separately; this can save memory when generating images of large size at the expense of slower inference.
            use_kv_cache (`bool`, *optional*, defaults to True): enable kv cache to speed up the inference
            offload_kv_cache (`bool`, *optional*, defaults to True): offload the cached key and value to cpu, which can save memory but slow down the generation silightly
            offload_model (`bool`, *optional*, defaults to False): offload the model to cpu, which can save memory but slow down the generation
            use_input_image_size_as_output (bool, defaults to False): whether to use the input image size as the output image size, which can be used for single-image input, e.g., image editing task
            seed (`int`, *optional*):
                A random seed for generating output.
            dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
                data type for the model
            output_type (`str`, *optional*, defaults to "pil"):
                The type of the output image, which can be "pt" or "pil"
        Examples:

        Returns:
            A list with the generated images.
        """
        # check inputs:
        assert height % 16 == 0 and width % 16 == 0, "The height and width must be a multiple of 16."
        if context_hidden_state is not None and not isinstance(context_hidden_state, list):
            context_hidden_state = [context_hidden_state]
            neg_context_hidden_state = [neg_context_hidden_state]

        # set model and processor
        if max_input_image_size != self.processor.max_image_size:
            self.processor = OmniGenProcessor(max_image_size=max_input_image_size)
        self.model.to(dtype)
        if offload_model:
            self.enable_model_cpu_offload()
        else:
            self.disable_model_cpu_offload()

        input_data = self.processor(context_hidden_state, neg_context_hidden_state, height=height, width=width, separate_cfg_input=separate_cfg_infer)

        num_prompt = len(context_hidden_state)
        num_cfg = 1
        latent_size_h, latent_size_w = height // 8, width // 8

        if seed is not None:
            generator = torch.Generator(device=self.device).manual_seed(seed)
        else:
            generator = None
        latents = torch.randn(num_prompt, 4, latent_size_h, latent_size_w, device=self.device, generator=generator)
        latents = torch.cat([latents] * (1 + num_cfg), 0).to(dtype)

        model_kwargs = dict(cfg_scale=guidance_scale,
                            use_kv_cache=use_kv_cache,
                            offload_model=offload_model,
                            )
        # obtain the qwen feature
        llm_input_embeds = []
        with torch.no_grad():
            # for seperate cfg infer mode
            for i in range(len(input_data['context_hidden_state'])):

                context_hidden_state = input_data['context_hidden_state'][i]
                hidden_states = self.connector[0](context_hidden_state)
                cache_position = torch.arange(0, hidden_states.shape[1], device=hidden_states.device)

                mask_func = self.model.llm._update_causal_mask
                cond_causal_mask = mask_func(
                    input_data['connector_attention_mask'][i].to(self.device), hidden_states, cache_position, None, None)
                for decoder_layer in self.connector[1:]:
                    layer_out = decoder_layer(
                        hidden_states,
                        attention_mask=cond_causal_mask,
                        position_ids=input_data['connector_position_ids'][i].to(self.device),
                    )
                    hidden_states = layer_out[0]

                llm_input_embeds.append(hidden_states)

            model_kwargs['llm_input_embeds'] = llm_input_embeds
            model_kwargs['llm_attention_mask'] = self.move_to_device(input_data['llm_attention_mask'])
            model_kwargs['llm_position_ids'] = self.move_to_device(input_data['llm_position_ids'])

        if separate_cfg_infer:
            func = self.model.forward_with_separate_cfg
        else:
            func = self.model.forward_with_cfg

        if self.model_cpu_offload:
            for name, param in self.model.named_parameters():
                if 'layers' in name and 'layers.0' not in name:
                    param.data = param.data.cpu()
                else:
                    param.data = param.data.to(self.device)
            for buffer_name, buffer in self.model.named_buffers():
                setattr(self.model, buffer_name, buffer.to(self.device))

        scheduler = OmniGenScheduler(num_steps=num_inference_steps)
        samples = scheduler(latents, func, model_kwargs, use_kv_cache=use_kv_cache, offload_kv_cache=offload_kv_cache, tqdm_disable=tqdm_disable)
        samples = samples.chunk((1 + num_cfg), dim=0)[0]

        if self.model_cpu_offload:
            self.model.to('cpu')
            if torch.cuda.is_available():
                torch.cuda.empty_cache()  # Clear VRAM
            gc.collect()

        self.vae.to(self.device)
        samples = samples.to(torch.float32)
        if self.vae.config.shift_factor is not None:
            samples = samples / self.vae.config.scaling_factor + self.vae.config.shift_factor
        else:
            samples = samples / self.vae.config.scaling_factor
        samples = self.vae.decode(samples).sample

        if self.model_cpu_offload:
            self.vae.to('cpu')
            if torch.cuda.is_available():
                torch.cuda.empty_cache()  # Clear VRAM
            gc.collect()

        samples = (samples * 0.5 + 0.5).clamp(0, 1)

        if output_type == "pt":
            output_images = samples
        else:
            output_samples = (samples * 255).to("cpu", dtype=torch.uint8)
            output_samples = output_samples.permute(0, 2, 3, 1).numpy()
            output_images = []
            for i, sample in enumerate(output_samples):
                output_images.append(Image.fromarray(sample))

        if torch.cuda.is_available():
            torch.cuda.empty_cache()  # Clear VRAM
        gc.collect()              # Run garbage collection to free system RAM

        return output_images