File size: 12,683 Bytes
8ba168f
 
 
 
 
 
 
58ee241
 
 
 
 
8ba168f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ee241
8ba168f
 
 
 
58ee241
8ba168f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ee241
8ba168f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import gradio as gr
from dotenv import load_dotenv
import os
import pandas as pd
import uuid
from datetime import datetime

from openai import OpenAI
        
# Load environment variables from .env file
load_dotenv()



use_local_llm = False


sentences_URL = "https://docs.google.com/spreadsheets/d/1w_MHR9coQQ7egMWbqMP8HkEysr31gKnqH2ysBzjQYfk/edit#gid=1183579691"
csv_sentence_URL = sentences_URL.replace('/edit#gid=', '/export?format=csv&gid=')

def get_sheets_sentences():

    try:
        csv_sheets_sentences_df = pd.read_csv(csv_sentence_URL)
        print("### Successfully read CSV file from sheets")
    except:
        print("### Error reading CSV file from sheets")
        return None

    return csv_sheets_sentences_df

# Define a function to set the client based on the selection
def set_client(selection):

    global use_local_llm

    if selection == "Llama3":
        import ollama
        client = ollama.Client(host='http://10.236.173.45:11434')
        use_local_llm = True
        print("Using Llama3")
        gr.Info(f"Using {selection}. Type in the chatbox to start.")
        print(client.chat( # prime the model
            model='llama3:70b',
            messages=[{"role": "system", "content": "Get ready."}],
            keep_alive= -1, # to prevent reloading model
            options = {
                'num_predict':1
            }
        ))
        print("### Llama3 model loaded")
    else:
        
        client = OpenAI(
            api_key=os.getenv('OPENAI_API_KEY')
        )
        #OPEN_AI_KEY = ""
        #client = OpenAI(api_key=OPEN_AI_KEY)  # gross
        use_local_llm = False
        print("Using OpenAI")
        gr.Info(f"Using {selection}. Type in the chatbox to start.")
    return client

# Initialise the client (default to OpenAI)
client = set_client("OpenAI")

#file_path = 'anki_japanese_english_pairs.csv'


def get_sentence_pair(level):
    
    # Load the CSV file
    #file_path = 'GPT generated Japanese English sentence pairs - Sheet2.csv'
    #df = pd.read_csv(file_path)

    df = get_sheets_sentences()

    print(df.head())

    if level == None:
        level = 'Easy'
        print("### Level not found - default to Easy")

    # Filter the DataFrame based on the desired level
    filtered_df = df[df['Difficulty'] == level]

    # If the filtered DataFrame is empty, return None
    if filtered_df.empty:
        print("### No sentences found for this level")
        return None
    
    print(filtered_df.head())

    # Select a random row from the filtered DataFrame
    random_row = filtered_df.sample(1)

    # Extract the Japanese and English sentences
    japanese_sentence = str(random_row.iloc[0, 0])
    english_sentence = str(random_row.iloc[0, 1])

    print(f"### Level: {level}")
    print(f"### Japanese sentence: {japanese_sentence}")
    print(f"### English sentence: {english_sentence}")

    return (japanese_sentence, english_sentence)

def generate_system_prompt(chat_id, japanese_sentence, english_sentence):

    # removed_from_system_prompt = f'''

    #  - Do not respond in Japanese - always respond in English even if the student uses Japanese with you.
    #  '''

    system_prompt = f'''
    **Translation Training Session**

    **Feedback form:**
    [Feedback Form](https://docs.google.com/forms/d/e/1FAIpQLSdqllTmXz8tEGsXSQnX1dSxbOTHxsAeBLepdDYj8DNSTYautw/viewform?usp=pp_url&entry.1679182700={chat_id})

    You are an assistant to help with Japanese to English translation practice. 
    Help students enhance their translation skills.

    **Guidelines:**
    - Use hints to improve the translation iteratively.
    - Do not give the correct translation (model answer) directly. Let the student work it out.
    - Provide your feedback as a list where possible.
   
    - Where the translation is correct, don't ask for another attempt. Translations are correct where they are grammatically accurate and convey the same meaning as the model answer.
    - When the translation is correct, always provide the user with the feedback form.
    - Where possible make any corrections bold.
    - Always explain any corrections you make clearly and concisely.
    - Don't say you are making a correction if you are not changing anything about the provided translation.
    - When giving hints, don't reveal the correct translation and don't repeat the same hint.
    - When asked about the words, give the translation for each word individually, not the full sentence translation.
    - Use Japanese quotes for Japanese text. I.e. γ€Œε•ι‘Œγ€.
    - Don't ask whether you should provide the feedback form, just provide it when the translation is correct.
    - Do not ask if the student would like the feedback form, just provide it.

    **Japanese Sentence to Translate:**
    "{japanese_sentence}"

    **English Sentence model answer:**
    "{english_sentence}"

    **Execute the following tasks:**
    1. Welcome the student. Ask the student to translate the Japanese Sentence to English. Show the Japanese sentence to the student.
    2. Suggest simple corrections (i.e., spelling, grammar, and punctuation). Where relevant, provide hints to improve the translation.
    3. If the translation is correct or or there are only minor errors, go to step 4. If not, ask for another translation attempt for the same sentence until the translation is correct (or close). 
    4. When the translation is correct or the student gives up, provide the user with the feedback form (to get their thoughts on the chat). It is very important to show this form to the student.
    
    **Feedback form:**
    [Feedback Form](https://docs.google.com/forms/d/e/1FAIpQLSdqllTmXz8tEGsXSQnX1dSxbOTHxsAeBLepdDYj8DNSTYautw/viewform?usp=pp_url&entry.1679182700={chat_id})
    '''

    return system_prompt


def print_chat(openai_format):
    for message in openai_format:
        print(f"{message['role'].capitalize()}: {message['content']}")


def predict(message, history, chat_id, sentence_pair, level='Easy'):

    print("### initial predict chat_id:", chat_id)
    print("history length", len(history))
    print("### sentence_pair:", sentence_pair)

    # if not chat_id:
    #     chat_id = str(uuid.uuid4())[:8]

    if not sentence_pair:
        print("### Sentence not found - getting new sentence pair")
        japanese_sentence, english_sentence = get_sentence_pair(level=level)
    else:
        japanese_sentence, english_sentence = sentence_pair[0], sentence_pair[1]

    history_openai_format = [{"role": "system", "content": generate_system_prompt(chat_id, japanese_sentence, english_sentence)}]
 
    for human, assistant in history:#[1:]:
        history_openai_format.append({"role": "user", "content": human })
        history_openai_format.append({"role": "assistant", "content":assistant})
    history_openai_format.append({"role": "user", "content": message})

    if use_local_llm:
        stream = client.chat(
            model='llama3:70b',
            messages=history_openai_format,
            stream=True,
            keep_alive= -1, # to prevent reloading model
            options = {
                #'temperature': 1.5, # very creative
                'temperature': 0.2 # very conservative (good for correct syntax)

            }
        )

        partial_message = ""
        response_text = ""
        for chunk in stream:
            response_text += chunk['message']['content'] # steve added for full response text for export
            partial_message = partial_message + chunk['message']['content']
            yield partial_message
    else:
  
        response = client.chat.completions.create(
            model='gpt-3.5-turbo',
            messages= history_openai_format,
            temperature=0.2,
            stream=True
        )

        partial_message = ""
        response_text = ""
        for chunk in response:
            if chunk.choices[0].delta.content is not None:
                response_text += chunk.choices[0].delta.content # steve added for full response text for export
                partial_message = partial_message + chunk.choices[0].delta.content
                yield partial_message

    # after display to user, for export and print
    history_openai_format.append({"role": "assistant", "content": response_text})

    #print("### final chat_id:", chat_id)
    export_conversation(history_openai_format, chat_id)
    print_chat(history_openai_format)

    #return chat_id

css = """
h1 {
    text-align: center;
    display: block;
}
"""

def generate_unique_id():
    return str(uuid.uuid4())[:8]

# TODO: Add LLM type to messages; add difficulty level to messages
def export_conversation(history_openai_format, chat_id):

    export_file_name = f"chat_{chat_id}.txt"

    with open(export_file_name, "a") as file:

        if file.tell() == 0:  
            timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            file.write(f"Chat started: {chat_id} {timestamp}\n\n")

        for message in history_openai_format:
            #timestamp = datetime.now().strftime("%H:%M:%S")
            #file.write(f"{timestamp}\t{message['role'].capitalize()}: {message['content']}\n")
            file.write(f"{message['role'].capitalize()}: {message['content']}\n")

def reset(input):
    return [], []

with gr.Blocks(css=css) as app:
    gr.Markdown("""# <center><font size=8>{}</center>""".format("Hi, it's Tammy! Say hi to start."))
    
    with gr.Row():

        with gr.Column(scale=1):

            gr.Markdown("""## Instructions""")
            gr.Markdown("""
                **Welcome to Tammy!**
                - Type your message in the textbox and press enter or Submit to send.  
                - Click Retry if the chatbot is stuck or the response is a little strange.
                - Your chats are recorded for quality assurance and training purposes. Behave.
            """)


            difficulty_level = gr.Dropdown(choices=["Easy", "Intermediate", "Advanced"], value="Easy", label="Difficulty Level", interactive=True)
            # llm_type = gr.Dropdown(choices=["Llama3", "OpenAI"], value="OpenAI", label="Choose LLM Type")

            # Define a function to handle changes in dropdown
            # def update_client(llm):
            #     global client
            #     client = set_client(llm)

            # Button to apply the change
            # apply_btn = gr.Button("Apply")
            # apply_btn.click(fn=update_client, inputs=llm_type, outputs=None)

            # gr.Markdown(f"""[Click here](https://docs.google.com/forms/d/e/1FAIpQLSdqllTmXz8tEGsXSQnX1dSxbOTHxsAeBLepdDYj8DNSTYautw/viewform?usp=pp_url&entry.1679182700={chat_id})
            # """)
        
        with gr.Column(scale=3):

            bot = gr.Chatbot(render=False, height=550)
             
            sentence_pair_state = gr.State(get_sentence_pair(level=difficulty_level.value))
            chat_id = gr.State(generate_unique_id)

            #print("### ui chat_id:", chat_id)

            chat = gr.ChatInterface(
                predict, 
                chatbot=bot,
                additional_inputs=[chat_id, sentence_pair_state, difficulty_level],
                examples=[
                    ["Help me start", None, None, None], 
                    ["Give me a hint", None, None, None], 
                    ["I need more help", None, None, None], 
                    ["What do you mean?", None, None, None], 
                    ["What do the words mean?", None, None, None],
                    ["Let's stop now", None, None, None]
                ],
            )

            difficulty_level.input(fn=reset, inputs=difficulty_level, outputs=[bot, chat.chatbot_state])

            def update_sentence_pair(level):

                global sentence_pair_state
                gr.Info(f"New {level} sentence selected. Type in the chatbox to start.")
                print("### updating level:", level)
                sentence_pair = get_sentence_pair(level)
                print("### new sentence pair:", sentence_pair)
                sentence_pair_state = gr.State(sentence_pair)
                return sentence_pair

            # def clear_chat_history(level):
            #     bot.clear()
            #     gr.Info(f"New {level} sentence selected. Type in the chatbox to start.")
            #     print("### updating level:", level)
            #     sentence_pair.data = get_sentence_pair(level=level)

            #difficulty_level.change(clear_chat_history, inputs=difficulty_level, outputs=sentence_pair)


            difficulty_level.change(update_sentence_pair, inputs=difficulty_level, outputs=sentence_pair_state)

        
app.launch()