Spaces:
Runtime error
Runtime error
File size: 7,565 Bytes
34b12ff d9f2adf 34b12ff 576be81 34b12ff d9f2adf 34b12ff 576be81 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d3f9927 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff 576be81 34b12ff d9f2adf 576be81 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff d9f2adf 34b12ff 576be81 34b12ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import networkx as nx
from streamlit.components.v1 import html
import streamlit as st
import helpers
import logging
# Setup Basic Configuration
st.set_page_config(layout='wide',
page_title='STriP: Semantic Similarity of Scientific Papers!',
page_icon='π‘'
)
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
logger = logging.getLogger('main')
def main():
st.title('STriP (S3P): Semantic Similarity of Scientific Papers!')
st.header('π Load Data')
uploaded_file = st.file_uploader("Choose a CSV file",
help='Upload a CSV file with the following columns: Title, Abstract')
##########
# Load data
##########
logger.info('========== Step1: Loading data ==========')
if uploaded_file is not None:
df = helpers.load_data(uploaded_file)
else:
df = helpers.load_data('data.csv')
data = df.copy()
selected_cols = st.multiselect('Select columns to analyse', options=data.columns,
default=[col for col in data.columns if col.lower() in ['title', 'abstract']])
data = data[selected_cols]
data = data.dropna()
data = data.reset_index(drop=True)
st.write(f'Number of papers: {len(data)}')
st.write('First 5 rows of loaded data:')
st.write(data[selected_cols].head())
if (data is not None) and selected_cols:
# For 'allenai-specter'
data['Text'] = data[data.columns[0]]
for column in data.columns[1:]:
data['Text'] = data['Text'] + '[SEP]' + data[column].astype(str)
##########
# Topic modeling
##########
logger.info('========== Step2: Topic modeling ==========')
st.header('π₯ Topic Modeling')
cols = st.columns(3)
with cols[0]:
min_topic_size = st.slider('Minimum topic size', key='min_topic_size', min_value=2,
max_value=min(round(len(data)*0.25), 100), step=1, value=min(round(len(data)/25), 10),
help='The minimum size of the topic. Increasing this value will lead to a lower number of clusters/topics.')
with cols[1]:
n_gram_range = st.slider('N-gram range', key='n_gram_range', min_value=1,
max_value=3, step=1, value=(1, 2),
help='N-gram range for the topic model')
with cols[2]:
st.text('')
st.text('')
st.button('Reset Defaults', on_click=helpers.reset_default_topic_sliders, key='reset_topic_sliders',
kwargs={'min_topic_size': min(round(len(data)/25), 10), 'n_gram_range': (1, 2)})
with st.spinner('Topic Modeling'):
topic_data, topic_model, topics = helpers.topic_modeling(
data, min_topic_size=min_topic_size, n_gram_range=n_gram_range)
mapping = {
'Topic Keywords': topic_model.visualize_barchart,
'Topic Similarities': topic_model.visualize_heatmap,
'Topic Hierarchies': topic_model.visualize_hierarchy,
'Intertopic Distance': topic_model.visualize_topics
}
cols = st.columns(3)
with cols[0]:
topic_model_vis_option = st.selectbox(
'Select Topic Modeling Visualization', mapping.keys())
try:
fig = mapping[topic_model_vis_option](top_n_topics=10)
fig.update_layout(title='')
st.plotly_chart(fig, use_container_width=True)
except:
st.warning(
'No visualization available. Try a lower Minimum topic size!')
##########
# STriP Network
##########
logger.info('========== Step3: STriP Network ==========')
st.header('π STriP Network')
with st.spinner('Cosine Similarity Calculation'):
cosine_sim_matrix = helpers.cosine_sim(data)
value, min_value = helpers.calc_optimal_threshold(
cosine_sim_matrix,
# 25% is a good value for the number of papers
max_connections=min(
helpers.calc_max_connections(len(data), 0.25), 5_000
)
)
cols = st.columns(3)
with cols[0]:
threshold = st.slider('Cosine Similarity Threshold', key='threshold', min_value=min_value,
max_value=1.0, step=0.01, value=value,
help='The minimum cosine similarity between papers to draw a connection. Increasing this value will lead to a lesser connections.')
neighbors, num_connections = helpers.calc_neighbors(
cosine_sim_matrix, threshold)
st.write(f'Number of connections: {num_connections}')
with cols[1]:
st.text('')
st.text('')
st.button('Reset Defaults', on_click=helpers.reset_default_threshold_slider, key='reset_threshold',
kwargs={'threshold': value})
with st.spinner('Network Generation'):
nx_net, pyvis_net = helpers.network_plot(
topic_data, topics, neighbors)
# Save and read graph as HTML file (on Streamlit Sharing)
try:
path = '/tmp'
pyvis_net.save_graph(f'{path}/pyvis_graph.html')
HtmlFile = open(f'{path}/pyvis_graph.html',
'r', encoding='utf-8')
# Save and read graph as HTML file (locally)
except:
path = '/html_files'
pyvis_net.save_graph(f'{path}/pyvis_graph.html')
HtmlFile = open(f'{path}/pyvis_graph.html',
'r', encoding='utf-8')
# Load HTML file in HTML component for display on Streamlit page
html(HtmlFile.read(), height=800)
##########
# Centrality
##########
logger.info('========== Step4: Network Centrality ==========')
st.header('π
Most Important Papers')
centrality_mapping = {
'Closeness Centrality': nx.closeness_centrality,
'Degree Centrality': nx.degree_centrality,
'Eigenvector Centrality': nx.eigenvector_centrality,
'Betweenness Centrality': nx.betweenness_centrality,
}
cols = st.columns(3)
with cols[0]:
centrality_option = st.selectbox(
'Select Centrality Measure', centrality_mapping.keys())
# Calculate centrality
centrality = centrality_mapping[centrality_option](nx_net)
cols = st.columns([1, 10, 1])
with cols[1]:
with st.spinner('Network Centrality Calculation'):
fig = helpers.network_centrality(
topic_data, centrality, centrality_option)
st.plotly_chart(fig, use_container_width=True)
st.markdown(
"""
π‘π₯π STriP v1.0 ππ₯π‘
π¨βπ¬ Author: Marie Stephen Leo
π Linkedin: [Marie Stephen Leo](https://www.linkedin.com/in/marie-stephen-leo/)
π Medium: [@stephen-leo](https://stephen-leo.medium.com/)
π» Github: [stephenleo](https://github.com/stephenleo)
"""
)
if __name__ == '__main__':
main()
|