Spaces:
Runtime error
Runtime error
File size: 8,318 Bytes
34b12ff d9f2adf 34b12ff 576be81 34b12ff d9f2adf d2b0a3c 34b12ff 5ab63e8 34b12ff d2b0a3c d9f2adf d2b0a3c d9f2adf d2b0a3c d9f2adf d2b0a3c 418c4bc b61e914 5ab63e8 b61e914 d2b0a3c 34b12ff d9f2adf d2b0a3c d9f2adf 34b12ff d2b0a3c 5ab63e8 d2b0a3c 34b12ff d2b0a3c 34b12ff d2b0a3c 5ab63e8 34b12ff d2b0a3c 34b12ff d2b0a3c 34b12ff d2b0a3c 34b12ff d2b0a3c 34b12ff d2b0a3c 34b12ff d2b0a3c 34b12ff d2b0a3c 5ab63e8 34b12ff d2b0a3c b61e914 d2b0a3c 5ab63e8 34b12ff 5ab63e8 34b12ff d2b0a3c 5ab63e8 d2b0a3c 5ab63e8 d2b0a3c 34b12ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import networkx as nx
from streamlit.components.v1 import html
import streamlit as st
import helpers
import logging
# Setup Basic Configuration
st.set_page_config(layout='wide',
page_title='STriP: Semantic Similarity of Scientific Papers!',
page_icon='๐ก'
)
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
logger = logging.getLogger('main')
def load_data():
"""Loads the data from the uploaded file.
"""
st.header('๐ Load Data')
read_md('markdown/load_data.md')
uploaded_file = st.file_uploader("Choose a CSV file",
help='Upload a CSV file with the following columns: Title, Abstract')
if uploaded_file is not None:
df = helpers.load_data(uploaded_file)
else:
df = helpers.load_data('data.csv')
data = df.copy()
# Column Selection. By default, any column called 'title' and 'abstract' are selected
st.subheader('Select columns to analyze')
selected_cols = st.multiselect(label='Select one or more columns. All the selected columns are concatenated before analyzing', options=data.columns,
default=[col for col in data.columns if col.lower() in ['title', 'abstract']])
if not selected_cols:
st.error('No columns selected! Please select some text columns to analyze')
data = data[selected_cols]
# Minor cleanup
data = data.dropna()
# Load max 200 rows only
st.write(f'Number of rows: {len(data)}')
if len(data) > 500:
data = data.sample(500, random_state=0)
st.write('Only random 500 rows will be analyzed')
data = data.reset_index(drop=True)
# Prints
st.write('First 5 rows of loaded data:')
st.write(data[selected_cols].head())
# Combine all selected columns
if (data is not None) and selected_cols:
data['Text'] = data[data.columns[0]]
for column in data.columns[1:]:
data['Text'] = data['Text'] + '[SEP]' + data[column].astype(str)
return data, selected_cols
def topic_modeling(data):
"""Runs the topic modeling step.
"""
st.header('๐ฅ Topic Modeling')
read_md('markdown/topic_modeling.md')
cols = st.columns(3)
with cols[0]:
min_topic_size = st.slider('Minimum topic size', key='min_topic_size', min_value=2,
max_value=min(round(len(data)*0.25), 100), step=1, value=min(round(len(data)/25), 10),
help='The minimum size of the topic. Increasing this value will lead to a lower number of clusters/topics.')
with cols[1]:
n_gram_range = st.slider('N-gram range', key='n_gram_range', min_value=1,
max_value=3, step=1, value=(1, 2),
help='N-gram range for the topic model')
with cols[2]:
st.text('')
st.text('')
st.button('Reset Defaults', on_click=helpers.reset_default_topic_sliders, key='reset_topic_sliders',
kwargs={'min_topic_size': min(round(len(data)/25), 10), 'n_gram_range': (1, 2)})
with st.spinner('Topic Modeling'):
with helpers.st_stdout("success"), helpers.st_stderr("code"):
topic_data, topic_model, topics = helpers.topic_modeling(
data, min_topic_size=min_topic_size, n_gram_range=n_gram_range)
mapping = {
'Topic Keywords': topic_model.visualize_barchart,
'Topic Similarities': topic_model.visualize_heatmap,
'Topic Hierarchies': topic_model.visualize_hierarchy,
'Intertopic Distance': topic_model.visualize_topics
}
cols = st.columns(3)
with cols[0]:
topic_model_vis_option = st.selectbox(
'Select Topic Modeling Visualization', mapping.keys())
try:
fig = mapping[topic_model_vis_option](top_n_topics=10)
fig.update_layout(title='')
st.plotly_chart(fig, use_container_width=True)
except:
st.warning(
'No visualization available. Try a lower Minimum topic size!')
return topic_data, topics
def strip_network(data, topic_data, topics):
"""Generated the STriP network.
"""
st.header('๐ STriP Network')
read_md('markdown/stripnet.md')
with st.spinner('Cosine Similarity Calculation'):
cosine_sim_matrix = helpers.cosine_sim(data)
value, min_value = helpers.calc_optimal_threshold(
cosine_sim_matrix,
# 25% is a good value for the number of papers
max_connections=min(
helpers.calc_max_connections(len(data), 0.25), 5_000
)
)
cols = st.columns(3)
with cols[0]:
threshold = st.slider('Cosine Similarity Threshold', key='threshold', min_value=min_value,
max_value=1.0, step=0.01, value=value,
help='The minimum cosine similarity between papers to draw a connection. Increasing this value will lead to a lesser connections.')
neighbors, num_connections = helpers.calc_neighbors(
cosine_sim_matrix, threshold)
st.write(f'Number of connections: {num_connections}')
with cols[1]:
st.text('')
st.text('')
st.button('Reset Defaults', on_click=helpers.reset_default_threshold_slider, key='reset_threshold',
kwargs={'threshold': value})
with st.spinner('Network Generation'):
nx_net, pyvis_net = helpers.network_plot(
topic_data, topics, neighbors)
# Save and read graph as HTML file (on Streamlit Sharing)
try:
path = '/tmp'
pyvis_net.save_graph(f'{path}/pyvis_graph.html')
HtmlFile = open(f'{path}/pyvis_graph.html',
'r', encoding='utf-8')
# Save and read graph as HTML file (locally)
except:
path = '/html_files'
pyvis_net.save_graph(f'{path}/pyvis_graph.html')
HtmlFile = open(f'{path}/pyvis_graph.html',
'r', encoding='utf-8')
# Load HTML file in HTML component for display on Streamlit page
html(HtmlFile.read(), height=800)
return nx_net
def network_centrality(nx_net, topic_data):
"""Finds most important papers using network centrality measures.
"""
st.header('๐
Most Important Papers')
read_md('markdown/centrality.md')
centrality_mapping = {
'Betweenness Centrality': nx.betweenness_centrality,
'Closeness Centrality': nx.closeness_centrality,
'Degree Centrality': nx.degree_centrality,
'Eigenvector Centrality': nx.eigenvector_centrality,
}
cols = st.columns(3)
with cols[0]:
centrality_option = st.selectbox(
'Select Centrality Measure', centrality_mapping.keys())
# Calculate centrality
centrality = centrality_mapping[centrality_option](nx_net)
cols = st.columns([1, 10, 1])
with cols[1]:
with st.spinner('Network Centrality Calculation'):
fig = helpers.network_centrality(
topic_data, centrality, centrality_option)
st.plotly_chart(fig, use_container_width=True)
def read_md(file_path):
"""Reads a markdown file and returns the contents as a streamlit markdown component.
"""
with open(file_path, 'r') as f:
content = st.markdown(f.read())
return content
def main():
st.title('STriPNet: Semantic Similarity of Scientific Papers!')
read_md('markdown/about_stripnet.md')
logger.info('========== Step1: Loading data ==========')
data, selected_cols = load_data()
if (data is not None) and selected_cols:
logger.info('========== Step2: Topic modeling ==========')
topic_data, topics = topic_modeling(data)
logger.info('========== Step3: STriP Network ==========')
nx_net = strip_network(data, topic_data, topics)
logger.info('========== Step4: Network Centrality ==========')
network_centrality(nx_net, topic_data)
read_md('markdown/about_me.md')
if __name__ == '__main__':
main()
|