File size: 5,626 Bytes
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import random

import numpy as np
import torch
import torch.nn as nn
from diffusers import AutoencoderKL
from torch.optim import lr_scheduler

from ..utils.core import debug, find, info, warn
from ..utils.typing import *

"""Diffusers Model Utils"""


def vae_encode(
    vae: AutoencoderKL,
    pixel_values: Float[Tensor, "B 3 H W"],
    sample: bool = True,
    apply_scale: bool = True,
):
    latent_dist = vae.encode(pixel_values).latent_dist
    latents = latent_dist.sample() if sample else latent_dist.mode()
    if apply_scale:
        latents = latents * vae.config.scaling_factor
    return latents


# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(
    prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True
):
    prompt_embeds_list = []

    captions = []
    for caption in prompt_batch:
        if random.random() < proportion_empty_prompts:
            captions.append("")
        elif isinstance(caption, str):
            captions.append(caption)
        elif isinstance(caption, (list, np.ndarray)):
            # take a random caption if there are multiple
            captions.append(random.choice(caption) if is_train else caption[0])

    with torch.no_grad():
        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
            text_inputs = tokenizer(
                captions,
                padding="max_length",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            prompt_embeds = text_encoder(
                text_input_ids.to(text_encoder.device),
                output_hidden_states=True,
            )

            # We are only ALWAYS interested in the pooled output of the final text encoder
            pooled_prompt_embeds = prompt_embeds[0]
            prompt_embeds = prompt_embeds.hidden_states[-2]
            bs_embed, seq_len, _ = prompt_embeds.shape
            prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
            prompt_embeds_list.append(prompt_embeds)

    prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
    pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
    return prompt_embeds, pooled_prompt_embeds


CLIP_INPUT_MEAN = torch.as_tensor(
    [0.48145466, 0.4578275, 0.40821073], dtype=torch.float32
)[None, :, None, None]
CLIP_INPUT_STD = torch.as_tensor(
    [0.26862954, 0.26130258, 0.27577711], dtype=torch.float32
)[None, :, None, None]


def normalize_image_for_clip(image: Float[Tensor, "B C H W"]):
    return (image - CLIP_INPUT_MEAN.to(image)) / CLIP_INPUT_STD.to(image)


"""Training"""


def get_scheduler(name):
    if hasattr(lr_scheduler, name):
        return getattr(lr_scheduler, name)
    else:
        raise NotImplementedError


def getattr_recursive(m, attr):
    for name in attr.split("."):
        m = getattr(m, name)
    return m


def get_parameters(model, name):
    module = getattr_recursive(model, name)
    if isinstance(module, nn.Module):
        return module.parameters()
    elif isinstance(module, nn.Parameter):
        return module
    return []


def parse_optimizer(config, model):
    if hasattr(config, "params"):
        params = [
            {"params": get_parameters(model, name), "name": name, **args}
            for name, args in config.params.items()
        ]
        debug(f"Specify optimizer params: {config.params}")
    else:
        params = model.parameters()
    if config.name in ["FusedAdam"]:
        import apex

        optim = getattr(apex.optimizers, config.name)(params, **config.args)
    elif config.name in ["Adam8bit", "AdamW8bit"]:
        import bitsandbytes as bnb

        optim = bnb.optim.Adam8bit(params, **config.args)
    else:
        optim = getattr(torch.optim, config.name)(params, **config.args)
    return optim


def parse_scheduler_to_instance(config, optimizer):
    if config.name == "ChainedScheduler":
        schedulers = [
            parse_scheduler_to_instance(conf, optimizer) for conf in config.schedulers
        ]
        scheduler = lr_scheduler.ChainedScheduler(schedulers)
    elif config.name == "Sequential":
        schedulers = [
            parse_scheduler_to_instance(conf, optimizer) for conf in config.schedulers
        ]
        scheduler = lr_scheduler.SequentialLR(
            optimizer, schedulers, milestones=config.milestones
        )
    else:
        scheduler = getattr(lr_scheduler, config.name)(optimizer, **config.args)
    return scheduler


def parse_scheduler(config, optimizer):
    interval = config.get("interval", "epoch")
    assert interval in ["epoch", "step"]
    if config.name == "SequentialLR":
        scheduler = {
            "scheduler": lr_scheduler.SequentialLR(
                optimizer,
                [
                    parse_scheduler(conf, optimizer)["scheduler"]
                    for conf in config.schedulers
                ],
                milestones=config.milestones,
            ),
            "interval": interval,
        }
    elif config.name == "ChainedScheduler":
        scheduler = {
            "scheduler": lr_scheduler.ChainedScheduler(
                [
                    parse_scheduler(conf, optimizer)["scheduler"]
                    for conf in config.schedulers
                ]
            ),
            "interval": interval,
        }
    else:
        scheduler = {
            "scheduler": get_scheduler(config.name)(optimizer, **config.args),
            "interval": interval,
        }
    return scheduler