Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,797 Bytes
2ac1c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import os
import random
from dataclasses import dataclass, field
import torch
import torch.nn.functional as F
from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers.models import AutoencoderKL
from diffusers.training_utils import compute_snr
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image
from ..pipelines.ig2mv_sdxl_pipeline import IG2MVSDXLPipeline
from ..schedulers.scheduling_shift_snr import ShiftSNRScheduler
from ..utils.core import find
from ..utils.typing import *
from .base import BaseSystem
from .utils import encode_prompt, vae_encode
def compute_embeddings(
prompt_batch,
empty_prompt_indices,
text_encoders,
tokenizers,
is_train=True,
**kwargs,
):
original_size = kwargs["original_size"]
target_size = kwargs["target_size"]
crops_coords_top_left = kwargs["crops_coords_top_left"]
for i in range(empty_prompt_indices.shape[0]):
if empty_prompt_indices[i]:
prompt_batch[i] = ""
prompt_embeds, pooled_prompt_embeds = encode_prompt(
prompt_batch, text_encoders, tokenizers, 0, is_train
)
add_text_embeds = pooled_prompt_embeds.to(
device=prompt_embeds.device, dtype=prompt_embeds.dtype
)
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.repeat(len(prompt_batch), 1)
add_time_ids = add_time_ids.to(
device=prompt_embeds.device, dtype=prompt_embeds.dtype
)
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs}
class IG2MVSDXLSystem(BaseSystem):
@dataclass
class Config(BaseSystem.Config):
# Model / Adapter
pretrained_model_name_or_path: str = "stabilityai/stable-diffusion-xl-base-1.0"
pretrained_vae_name_or_path: Optional[str] = "madebyollin/sdxl-vae-fp16-fix"
pretrained_adapter_name_or_path: Optional[str] = None
pretrained_unet_name_or_path: Optional[str] = None
init_adapter_kwargs: Dict[str, Any] = field(default_factory=dict)
use_fp16_vae: bool = True
use_fp16_clip: bool = True
# Training
trainable_modules: List[str] = field(default_factory=list)
train_cond_encoder: bool = True
prompt_drop_prob: float = 0.0
image_drop_prob: float = 0.0
cond_drop_prob: float = 0.0
gradient_checkpointing: bool = False
# Noise sampler
noise_scheduler_kwargs: Dict[str, Any] = field(default_factory=dict)
noise_offset: float = 0.0
input_perturbation: float = 0.0
snr_gamma: Optional[float] = 5.0
prediction_type: Optional[str] = None
shift_noise: bool = False
shift_noise_mode: str = "interpolated"
shift_noise_scale: float = 1.0
# Evaluation
eval_seed: int = 0
eval_num_inference_steps: int = 30
eval_guidance_scale: float = 1.0
eval_height: int = 512
eval_width: int = 512
cfg: Config
def configure(self):
super().configure()
# Prepare pipeline
pipeline_kwargs = {}
if self.cfg.pretrained_vae_name_or_path is not None:
pipeline_kwargs["vae"] = AutoencoderKL.from_pretrained(
self.cfg.pretrained_vae_name_or_path
)
if self.cfg.pretrained_unet_name_or_path is not None:
pipeline_kwargs["unet"] = UNet2DConditionModel.from_pretrained(
self.cfg.pretrained_unet_name_or_path
)
pipeline: IG2MVSDXLPipeline
pipeline = IG2MVSDXLPipeline.from_pretrained(
self.cfg.pretrained_model_name_or_path, **pipeline_kwargs
)
init_adapter_kwargs = OmegaConf.to_container(self.cfg.init_adapter_kwargs)
if "self_attn_processor" in init_adapter_kwargs:
self_attn_processor = init_adapter_kwargs["self_attn_processor"]
if self_attn_processor is not None and isinstance(self_attn_processor, str):
self_attn_processor = find(self_attn_processor)
init_adapter_kwargs["self_attn_processor"] = self_attn_processor
pipeline.init_custom_adapter(**init_adapter_kwargs)
if self.cfg.pretrained_adapter_name_or_path:
pretrained_path = os.path.dirname(self.cfg.pretrained_adapter_name_or_path)
adapter_name = os.path.basename(self.cfg.pretrained_adapter_name_or_path)
pipeline.load_custom_adapter(pretrained_path, weight_name=adapter_name)
noise_scheduler = DDPMScheduler.from_config(
pipeline.scheduler.config, **self.cfg.noise_scheduler_kwargs
)
if self.cfg.shift_noise:
noise_scheduler = ShiftSNRScheduler.from_scheduler(
noise_scheduler,
shift_mode=self.cfg.shift_noise_mode,
shift_scale=self.cfg.shift_noise_scale,
scheduler_class=DDPMScheduler,
)
pipeline.scheduler = noise_scheduler
# Prepare models
self.pipeline: IG2MVSDXLPipeline = pipeline
self.vae = self.pipeline.vae.to(
dtype=torch.float16 if self.cfg.use_fp16_vae else torch.float32
)
self.tokenizer = self.pipeline.tokenizer
self.tokenizer_2 = self.pipeline.tokenizer_2
self.text_encoder = self.pipeline.text_encoder.to(
dtype=torch.float16 if self.cfg.use_fp16_clip else torch.float32
)
self.text_encoder_2 = self.pipeline.text_encoder_2.to(
dtype=torch.float16 if self.cfg.use_fp16_clip else torch.float32
)
self.feature_extractor = self.pipeline.feature_extractor
self.cond_encoder = self.pipeline.cond_encoder
self.unet = self.pipeline.unet
self.noise_scheduler = self.pipeline.scheduler
self.inference_scheduler = DDPMScheduler.from_config(
self.noise_scheduler.config
)
self.pipeline.scheduler = self.inference_scheduler
if self.cfg.prediction_type is not None:
self.noise_scheduler.register_to_config(
prediction_type=self.cfg.prediction_type
)
# Prepare trainable / non-trainable modules
trainable_modules = self.cfg.trainable_modules
if trainable_modules and len(trainable_modules) > 0:
self.unet.requires_grad_(False)
for name, module in self.unet.named_modules():
for trainable_module in trainable_modules:
if trainable_module in name:
module.requires_grad_(True)
else:
self.unet.requires_grad_(True)
self.cond_encoder.requires_grad_(self.cfg.train_cond_encoder)
self.vae.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.text_encoder_2.requires_grad_(False)
# Others
# Prepare gradient checkpointing
if self.cfg.gradient_checkpointing:
self.unet.enable_gradient_checkpointing()
def forward(
self,
noisy_latents: Tensor,
conditioning_pixel_values: Tensor,
timesteps: Tensor,
ref_latents: Tensor,
prompts: List[str],
num_views: int,
**kwargs,
) -> Dict[str, Any]:
bsz = noisy_latents.shape[0]
b_samples = bsz // num_views
num_batch_images = num_views
prompt_drop_mask = (
torch.rand(b_samples, device=noisy_latents.device)
< self.cfg.prompt_drop_prob
)
image_drop_mask = (
torch.rand(b_samples, device=noisy_latents.device)
< self.cfg.image_drop_prob
)
cond_drop_mask = (
torch.rand(b_samples, device=noisy_latents.device) < self.cfg.cond_drop_prob
)
prompt_drop_mask = prompt_drop_mask | cond_drop_mask
image_drop_mask = image_drop_mask | cond_drop_mask
with torch.no_grad(), torch.cuda.amp.autocast(enabled=False):
# Here, we compute not just the text embeddings but also the additional embeddings
# needed for the SD XL UNet to operate.
additional_embeds = compute_embeddings(
prompts,
prompt_drop_mask,
[self.text_encoder, self.text_encoder_2],
[self.tokenizer, self.tokenizer_2],
**kwargs,
)
# Process reference latents to obtain reference features
with torch.no_grad():
ref_timesteps = torch.zeros_like(timesteps[:b_samples])
ref_hidden_states = {}
self.unet(
ref_latents,
ref_timesteps,
encoder_hidden_states=additional_embeds["prompt_embeds"],
added_cond_kwargs={
"text_embeds": additional_embeds["text_embeds"],
"time_ids": additional_embeds["time_ids"],
},
cross_attention_kwargs={
"cache_hidden_states": ref_hidden_states,
"use_mv": False,
"use_ref": False,
},
return_dict=False,
)
for k, v in ref_hidden_states.items():
v_ = v
v_[image_drop_mask] = 0.0
ref_hidden_states[k] = v_.repeat_interleave(num_batch_images, dim=0)
# Repeat additional embeddings for each image in the batch
for key, value in additional_embeds.items():
kwargs[key] = value.repeat_interleave(num_batch_images, dim=0)
conditioning_features = self.cond_encoder(conditioning_pixel_values)
added_cond_kwargs = {
"text_embeds": kwargs["text_embeds"],
"time_ids": kwargs["time_ids"],
}
noise_pred = self.unet(
noisy_latents,
timesteps,
encoder_hidden_states=kwargs["prompt_embeds"],
added_cond_kwargs=added_cond_kwargs,
down_intrablock_additional_residuals=conditioning_features,
cross_attention_kwargs={
"ref_hidden_states": ref_hidden_states,
"num_views": num_views,
},
).sample
return {"noise_pred": noise_pred}
def training_step(self, batch, batch_idx):
num_views = batch["num_views"]
vae_max_slice = 8
with torch.no_grad(), torch.cuda.amp.autocast(enabled=False):
latents = []
for i in range(0, batch["rgb"].shape[0], vae_max_slice):
latents.append(
vae_encode(
self.vae,
batch["rgb"][i : i + vae_max_slice].to(self.vae.dtype) * 2 - 1,
sample=True,
apply_scale=True,
).float()
)
latents = torch.cat(latents, dim=0)
with torch.no_grad(), torch.cuda.amp.autocast(enabled=False):
ref_latents = vae_encode(
self.vae,
batch["reference_rgb"].to(self.vae.dtype) * 2 - 1,
sample=True,
apply_scale=True,
).float()
bsz = latents.shape[0]
b_samples = bsz // num_views
noise = torch.randn_like(latents)
if self.cfg.noise_offset is not None:
# # https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += self.cfg.noise_offset * torch.randn(
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device
)
noise_mask = (
batch["noise_mask"]
if "noise_mask" in batch
else torch.ones((bsz,), dtype=torch.bool, device=latents.device)
)
timesteps = torch.randint(
0,
self.noise_scheduler.config.num_train_timesteps,
(b_samples,),
device=latents.device,
dtype=torch.long,
)
timesteps = timesteps.repeat_interleave(num_views)
timesteps[~noise_mask] = 0
if self.cfg.input_perturbation is not None:
new_noise = noise + self.cfg.input_perturbation * torch.randn_like(noise)
noisy_latents = self.noise_scheduler.add_noise(
latents, new_noise, timesteps
)
else:
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
noisy_latents[~noise_mask] = latents[~noise_mask]
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(
f"Unsupported prediction type {self.noise_scheduler.config.prediction_type}"
)
model_pred = self(
noisy_latents, batch["source_rgb"], timesteps, ref_latents, **batch
)["noise_pred"]
model_pred = model_pred[noise_mask]
target = target[noise_mask]
if self.cfg.snr_gamma is None:
loss = F.mse_loss(model_pred, target, reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
# This is discussed in Section 4.2 of the same paper.
snr = compute_snr(self.noise_scheduler, timesteps)
if self.noise_scheduler.config.prediction_type == "v_prediction":
# Velocity objective requires that we add one to SNR values before we divide by them.
snr = snr + 1
mse_loss_weights = (
torch.stack(
[snr, self.cfg.snr_gamma * torch.ones_like(timesteps)], dim=1
).min(dim=1)[0]
/ snr
)
loss = F.mse_loss(model_pred, target, reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
self.log("train/loss", loss, prog_bar=True)
# will execute self.on_check_train every self.cfg.check_train_every_n_steps steps
self.check_train(batch)
return {"loss": loss}
def on_train_batch_end(self, outputs, batch, batch_idx):
pass
def get_input_visualizations(self, batch):
return [
{
"type": "rgb",
"img": rearrange(
batch["source_rgb"],
"(B N) C H W -> (B H) (N W) C",
N=batch["num_views"],
),
"kwargs": {"data_format": "HWC"},
},
{
"type": "rgb",
"img": rearrange(batch["reference_rgb"], "B C H W -> (B H) W C"),
"kwargs": {"data_format": "HWC"},
},
{
"type": "rgb",
"img": rearrange(
batch["rgb"], "(B N) C H W -> (B H) (N W) C", N=batch["num_views"]
),
"kwargs": {"data_format": "HWC"},
},
]
def get_output_visualizations(self, batch, outputs):
images = [
{
"type": "rgb",
"img": rearrange(
batch["source_rgb"],
"(B N) C H W -> (B H) (N W) C",
N=batch["num_views"],
),
"kwargs": {"data_format": "HWC"},
},
{
"type": "rgb",
"img": rearrange(
batch["rgb"], "(B N) C H W -> (B H) (N W) C", N=batch["num_views"]
),
"kwargs": {"data_format": "HWC"},
},
{
"type": "rgb",
"img": rearrange(batch["reference_rgb"], "B C H W -> (B H) W C"),
"kwargs": {"data_format": "HWC"},
},
{
"type": "rgb",
"img": rearrange(
outputs, "(B N) C H W -> (B H) (N W) C", N=batch["num_views"]
),
"kwargs": {"data_format": "HWC"},
},
]
return images
def generate_images(self, batch, **kwargs):
return self.pipeline(
prompt=batch["prompts"],
control_image=batch["source_rgb"],
num_images_per_prompt=batch["num_views"],
generator=torch.Generator(device=self.device).manual_seed(
self.cfg.eval_seed
),
num_inference_steps=self.cfg.eval_num_inference_steps,
guidance_scale=self.cfg.eval_guidance_scale,
height=self.cfg.eval_height,
width=self.cfg.eval_width,
reference_image=batch["reference_rgb"],
output_type="pt",
).images
def on_save_checkpoint(self, checkpoint):
if self.global_rank == 0:
self.pipeline.save_custom_adapter(
os.path.dirname(self.get_save_dir()),
"step1x-3d-ig2v.safetensors",
safe_serialization=True,
include_keys=self.cfg.trainable_modules,
)
def on_check_train(self, batch):
self.save_image_grid(
f"it{self.true_global_step}-train.jpg",
self.get_input_visualizations(batch),
name="train_step_input",
step=self.true_global_step,
)
def validation_step(self, batch, batch_idx):
out = self.generate_images(batch)
if (
self.cfg.check_val_limit_rank > 0
and self.global_rank < self.cfg.check_val_limit_rank
):
self.save_image_grid(
f"it{self.true_global_step}-validation-{self.global_rank}_{batch_idx}.jpg",
self.get_output_visualizations(batch, out),
name=f"validation_step_output_{self.global_rank}_{batch_idx}",
step=self.true_global_step,
)
def on_validation_epoch_end(self):
pass
def test_step(self, batch, batch_idx):
out = self.generate_images(batch)
self.save_image_grid(
f"it{self.true_global_step}-test-{self.global_rank}_{batch_idx}.jpg",
self.get_output_visualizations(batch, out),
name=f"test_step_output_{self.global_rank}_{batch_idx}",
step=self.true_global_step,
)
def on_test_end(self):
pass
|